Electron spectroscopic imaging of the centrosome in cells of the Indian muntjac

1988 ◽  
Vol 91 (1) ◽  
pp. 5-11
Author(s):  
J.B. Rattner ◽  
D.P. Bazett-Jones

Specific antibody labelling indicates that phosphoproteins are present at microtubule-organizing centres, including the centrosome. We have employed electron spectroscopic imaging techniques that permit high-resolution elemental analysis of thin sections of intact cells to investigate the precise distribution of phosphorus and therefore phosphoproteins at the centrosome of Indian muntjac cells. We report that these proteins are localized to both the pericentriolar matrix and the centriole. The matrix contains an abundance of phosphorus and is associated with microtubule elements. Within the mature centriole, major structures including the nine triplet blades and linking elements that connect adjacent blades are composed of phosphorylated proteins. In addition, phosphoproteins are abundant at the ends of the centriole, at the interface between the centriole lumen and the pericentriolar environment. From these observations we suggest that phosphoproteins may play both a structural and a functional role within the centrosome region.

1990 ◽  
Vol 38 (2) ◽  
pp. 275-282 ◽  
Author(s):  
R C Wagner ◽  
S C Chen

We used terbium as an intravital tracer of permeability pathways across the walls of capillaries in the rete mirabile of the eel swimbladder and in frog mesentery. Terbium was detected in unstained ultra-thin sections by electron density using electron spectroscopic imaging (ESI) and by electron energy loss spectroscopy (EELS). Enhancement of intrinsic contrast in zero loss images (elastically scattered electrons) permitted imaging of membrane-bound compartments and terbium within them which might otherwise have been undetected in counterstained sections. Element-selective imaging with EELS indicated that terbium was associated with heavy electron-dense deposits, but the terbium mass:volume of sections in areas of lighter deposition was insufficient to obtain a terbium signal. In the rete capillaries, terbium was deposited on the luminal surface, throughout vesicular profiles, and in the interstitium, but could not be traced through interendothelial junctions. Fine terbium deposits were detectable throughout apparent vesicular connections across the endothelium. In the frog mesentery, terbium penetrated some but not all interendothelial clefts, and was detectable in small quantities within luminal and abluminal vesicular profiles and in the interstitium. The results indicate that in the rete capillaries, terbium permeates the capillary via a transcellular route. This route may be provided by transient fusions of luminal and abluminal vesicular compartments.


1989 ◽  
Vol 37 (5) ◽  
pp. 573-580 ◽  
Author(s):  
M Bendayan ◽  
R F Barth ◽  
D Gingras ◽  
I Londoño ◽  
P T Robinson ◽  
...  

In the present study we adapted electron spectroscopic imaging (ESI) for high-resolution immunocytochemistry. To accomplish this, we applied boronated protein A (B-pA) for indirect detection of specific antigenic sites using pre-embedding and post-embedding protocols. Isolated acinar cells were exposed to wheat germ agglutinin (WGA) and anti-WGA, followed by B-pA, to reveal WGA binding sites at the level of the plasma membrane. The cells were then embedded in Epon and unstained ultra-thin sections were examined by electron microscopy using the ESI mode. For post-embedding, ultra-thin sections of glutaraldehyde-fixed, Lowicryl-embedded pancreatic tissue were exposed to specific antibodies (anti-insulin or anti-amylase), followed by B-pA. The unstained sections were examined using the ESI mode. In both cases, boron was detected with high resolution either at the level of the plasma membrane of acinar cells, demonstrating WGA binding sites, or over secretory granules in pancreatic insulin-secreting cells or acinar cells, demonstrating insulin and amylase, respectively. These findings were compared to those obtained with the protein A-gold technique, and have demonstrated the analogy of both types of labeling. In addition, several control experiments assessed this novel approach. They have demonstrated the specificity of labeling and the high reactivity of B-pA, as well as its antibody-binding properties. Finally, electron energy loss spectral analysis confirmed the presence of boron in the tissue sections at sites where immunolabeling was detected. These results demonstrate that ESI is an appropriate approach for cytochemistry. Since the technique is based on detection of elements, spatial resolution is considered to be in the magnitude of 0.5 nm, which represents a major improvement in resolution over actual electron microscopic cytochemical techniques.


1987 ◽  
Vol 33 (2) ◽  
pp. 128-131 ◽  
Author(s):  
A. Rogerson ◽  
A. S. W. DeFreitas ◽  
A. G. McInnes

Silicon and phosphorus distributions in the cytoplasm of the diatom Thalassiosira pseudonana were mapped separately using electron spectroscopic imaging techniques. The phosphorus profile delineating cytoplasmic ribosomes overlapped the silicon profile with a high degree of coincidence suggesting a silicon–ribosomal association. Lipid inclusions were also sites of silicon accumulation. The possible significance of these results in wall biomineralization is discussed.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


Author(s):  
Daniel Beniac ◽  
George Harauz

The structures of E. coli ribosomes have been extensively probed by electron microscopy of negatively stained and frozen hydrated preparations. Coupled with quantitative image analysis and three dimensional reconstruction, such approaches are worthwhile in defining size, shape, and quaternary organisation. The important question of how the nucleic acid and protein components are arranged with respect to each other remains difficult to answer, however. A microscopical technique that has been proposed to answer this query is electron spectroscopic imaging (ESI), in which scattered electrons with energy losses characteristic of inner shell ionisations are used to form specific elemental maps. Here, we report the use of image sorting and averaging techniques to determine the extent to which a phosphorus map of isolated ribosomal subunits can define the ribosomal RNA (rRNA) distribution within them.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
C.L. Woodcock ◽  
R.A. Horowitz ◽  
D. P. Bazett-Jones ◽  
A.L. Olins

In the eukaryotic nucleus, DNA is packaged into nucleosomes, and the nucleosome chain folded into ‘30nm’ chromatin fibers. A number of different model structures, each with a specific location of nucleosomal and linker DNA have been proposed for the arrangment of nucleosomes within the fiber. We are exploring two strategies for testing the models by localizing DNA within chromatin: electron spectroscopic imaging (ESI) of phosphorus atoms, and osmium ammine (OSAM) staining, a method based on the DNA-specific Feulgen reaction.Sperm were obtained from Patiria miniata (starfish), fixed in 2% GA in 150mM NaCl, 15mM HEPES pH 8.0, and embedded In Lowiciyl K11M at -55C. For OSAM staining, sections 100nm to 150nm thick were treated as described, and stereo pairs recorded at 40,000x and 100KV using a Philips CM10 TEM. (The new osmium ammine-B stain is available from Polysciences Inc). Uranyl-lead (U-Pb) staining was as described. ESI was carried out on unstained, very thin (<30 nm) beveled sections at 80KV using a Zeiss EM902. Images were recorded at 20,000x and 30,000x with median energy losses of 110eV, 120eV and 160eV, and a window of 20eV.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1699
Author(s):  
Jiarun Lin ◽  
Marcus E. Graziotto ◽  
Peter A. Lay ◽  
Elizabeth J. New

Biochemical changes in specific organelles underpin cellular function, and studying these changes is crucial to understand health and disease. Fluorescent probes have become important biosensing and imaging tools as they can be targeted to specific organelles and can detect changes in their chemical environment. However, the sensing capacity of fluorescent probes is highly specific and is often limited to a single analyte of interest. A novel approach to imaging organelles is to combine fluorescent sensors with vibrational spectroscopic imaging techniques; the latter provides a comprehensive map of the relative biochemical distributions throughout the cell to gain a more complete picture of the biochemistry of organelles. We have developed NpCN1, a bimodal fluorescence-Raman probe targeted to the lipid droplets, incorporating a nitrile as a Raman tag. NpCN1 was successfully used to image lipid droplets in 3T3-L1 cells in both fluorescence and Raman modalities, reporting on the chemical composition and distribution of the lipid droplets in the cells.


Sign in / Sign up

Export Citation Format

Share Document