scholarly journals The Fission Yeast Transforming Acidic Coiled Coil–related Protein Mia1p/Alp7p Is Required for Formation and Maintenance of Persistent Microtubule-organizing Centers at the Nuclear Envelope

2006 ◽  
Vol 17 (5) ◽  
pp. 2212-2222 ◽  
Author(s):  
Liling Zheng ◽  
Cindi Schwartz ◽  
Liangmeng Wee ◽  
Snezhana Oliferenko

Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil–related protein Mia1p/Alp7p functions in emergence of large MTOCs in interphase fission yeast cells. We found that Mia1p was a microtubule-binding protein that preferentially localized to the minus ends of microtubules and was associated with the sites of microtubule attachment to the nuclear envelope. Cells lacking Mia1p exhibited less microtubule bundles. Microtubules could be nucleated and bundled but were frequently released from the nucleation sites in mia1Δ cells. Mia1p was required for stability of microtubule bundles and persistent use of nucleation sites both in interphase and postanaphase array dynamics. The γ-tubulin–rich material was not organized in large perinuclear or microtubule-associated structures in mia1Δ cells. Interestingly, absence of microtubules in dividing wild-type cells prevented appearance of large γ-tubulin–rich MTOC structures in daughters. When microtubule polymerization was allowed, MTOCs were efficiently assembled de novo. We propose a model where MTOC emergence is a self-organizing process requiring the continuous association of microtubules with nucleation sites.

2002 ◽  
Vol 115 (2) ◽  
pp. 421-431
Author(s):  
Anna Matynia ◽  
Sandra S. Salus ◽  
Shelley Sazer

The Ran GTPase is an essential protein that has multiple functions in eukaryotic cells. Fission yeast cells in which Ran is misregulated arrest after mitosis with condensed, unreplicated chromosomes and abnormal nuclear envelopes. The fission yeast sns mutants arrest with a similar cell cycle block and interact genetically with the Ran system. sns-A10, sns-B2 and sns-B9 have mutations in the fission yeast homologues of S. cerevisiae Sar1p, Sec31p and Sec53p, respectively, which are required for the early steps of the protein secretory pathway. The three sns mutants accumulate a normally secreted protein in the endoplasmic reticulum (ER), have an increased amount of ER membrane, and the ER/nuclear envelope lumen is dilated. Neither a post-ER block in the secretory pathway, nor ER proliferation caused by overexpression of an integral ER membrane protein, results in a cell cycle-specific defect. Therefore, the arrest seen in sns-A10, sns-B2 and sns-B9 is most likely due to nuclear envelope defects that render the cells unable to re-establish the interphase organization of the nucleus after mitosis. As a consequence, these mutants are unable to decondense their chromosomes or to initiate of the next round of DNA replication.


2019 ◽  
Vol 11 (11) ◽  
pp. 944-955 ◽  
Author(s):  
Wenyue Liu ◽  
Fan Zheng ◽  
Yucai Wang ◽  
Chuanhai Fu

Abstract Microtubules grow not only from the centrosome but also from various noncentrosomal microtubule-organizing centers (MTOCs), including the nuclear envelope (NE) and pre-existing microtubules. The evolutionarily conserved proteins Mto1/CDK5RAP2 and Alp14/TOG/XMAP215 have been shown to be involved in promoting microtubule nucleation. However, it has remained elusive as to how the microtubule nucleation promoting factors are specified to various noncentrosomal MTOCs, particularly the NE, and how these proteins coordinate to organize microtubule assembly. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, efficient interphase microtubule growth from the NE requires Alp7/TACC, Alp14/TOG/XMAP215, and Mto1/CDK5RAP2. The absence of Alp7, Alp14, or Mto1 compromises microtubule regrowth on the NE in cells undergoing microtubule repolymerization. We further demonstrate that Alp7 and Mto1 interdependently localize to the NE in cells without microtubules and that Alp14 localizes to the NE in an Alp7 and Mto1-dependent manner. Tethering Mto1 to the NE in cells lacking Alp7 partially restores microtubule number and the efficiency of microtubule generation from the NE. Hence, our study delineates that Alp7, Alp14, and Mto1 work in concert to regulate interphase microtubule regrowth on the NE.


2018 ◽  
Author(s):  
Mary Pickering ◽  
Lauren Nicole Hollis ◽  
Edridge D’Souza ◽  
Nicholas Rhind

ABSTRACTHow the rate of cell growth is influenced by cell size is a fundamental question of cell biology. The simple model that cell growth is proportional to cell size, based on the proposition that larger cells have proportionally greater synthetic capacity than smaller cells, leads to the predication that the rate of cell growth increases exponentially with cell size. However, other modes of cell growth, including bilinear growth, have been reported. The distinction between exponential and bilinear growth has been explored in particular detail in the fission yeast Schizosaccharomyces pombe. We have revisited the mode of fission yeast cell growth using high-resolution time-lapse microscopy and find, as previously reported, that these two growth models are difficult to distinguish both because of the similarity in shapes between exponential and bilinear curves over the two-fold change in length of a normal cell cycle and because of the substantial biological and experimental noise inherent to these experiments. Therefore, we contrived to have cells grow more than two fold, by holding them in G2 for up to eight hours. Over this extended growth period, in which cells grow up to 5.5-fold, the two growth models diverge to the point that we can confidently exclude bilinear growth as a general model for fission yeast growth. Although the growth we observe is clearly more complicated than predicted by simple exponential growth, we find that exponential growth is a robust approximation of fission yeast growth, both during an unperturbed cell cycle and during extended periods of growth.


2020 ◽  
Vol 117 (35) ◽  
pp. 21504-21511
Author(s):  
Sebastian Jespersen Charlton ◽  
Maria Mønster Jørgensen ◽  
Geneviève Thon

In fission yeast, the inverted repeatsIR-LandIR-Rfunction as boundary elements at the edges of a 20-kb silent heterochromatic domain where nucleosomes are methylated at histone H3K9. Each repeat contains a series of B-box motifs physically associated with the architectural TFIIIC complex and with other factors including the replication regulator Sap1 and the Rix1 complex (RIXC). We demonstrate here the activity of these repeats in heterochromatin formation and maintenance. Deletion of the entireIR-Rrepeat or, to a lesser degree, deletion of just the B boxes impaired the de novo establishment of the heterochromatic domain. Nucleation proceeded normally at the RNA interference (RNAi)-dependent elementcenHbut subsequent propagation to the rest of the region occurred at reduced rates in the mutants. Once established, heterochromatin was unstable in the mutants. These defects resulted in bistable populations of cells occupying alternate “on” and “off” epigenetic states. DeletingIR-Lin combination withIR-Rsynergistically tipped the balance toward the derepressed state, revealing a concerted action of the two boundaries at a distance. The nuclear rim protein Amo1 has been proposed to tether the mating-type region and its boundaries to the nuclear envelope, where Amo1 mutants displayed milder phenotypes than boundary mutants. Thus, the boundaries might facilitate heterochromatin propagation and maintenance in ways other than just through Amo1, perhaps by constraining a looped domain through pairing.


2020 ◽  
Vol 48 (6) ◽  
pp. 3029-3041 ◽  
Author(s):  
Laetitia Maestroni ◽  
Céline Reyes ◽  
Mélina Vaurs ◽  
Yannick Gachet ◽  
Sylvie Tournier ◽  
...  

Abstract Telomere anchoring to nuclear envelope (NE) is a key feature of nuclear genome architecture. Peripheral localization of telomeres is important for chromatin silencing, telomere replication and for the control of inappropriate recombination. Here, we report that fission yeast quiescent cells harbor predominantly a single telomeric cluster anchored to the NE. Telomere cluster association to the NE relies on Rap1–Bqt4 interaction, which is impacted by the length of telomeric sequences. In quiescent cells, reducing telomere length or deleting bqt4, both result in an increase in transcription of the telomeric repeat-containing RNA (TERRA). In the absence of Bqt4, telomere shortening leads to deep increase in TERRA level and the concomitant formation of subtelomeric rearrangements (STEEx) that accumulate massively in quiescent cells. Taken together, our data demonstrate that Rap1–Bqt4-dependent telomere association to NE preserves telomere integrity in post-mitotic cells, preventing telomeric transcription and recombination. This defines the nuclear periphery as an area where recombination is restricted, creating a safe zone for telomeres of post-mitotic cells.


2012 ◽  
Vol 23 (20) ◽  
pp. 3993-4007 ◽  
Author(s):  
Shambaditya Saha ◽  
Thomas D. Pollard

Fission yeast cells depend on the anillin-related protein Mid1p for reliable cytokinesis. Insolubility limits the purification of full-length Mid1p for biophysical analysis, and lack of knowledge about the structural domains of Mid1p limits functional analysis. We addressed these limitations by identifying in a bacterial expression screen of random Mid1p fragments five soluble segments that can be purified and one insoluble segment. Using complementation experiments in Δmid1 cells, we tested the biological functions of these six putative domains that account for full-length Mid1p. The N-terminal domain (residues 1–149) is essential for correct positioning and orientation of septa. The third domain (residues 309–452) allows the construct composed of the first three domains (residues 1-452) to form hydrodynamically well-behaved octamers. Constructs consisting of residues 1–452 or 1–578 carry out most functions of full-length Mid1p, including concentration at the equatorial cortex in nodes that accumulate myosin-II and other contractile ring proteins during mitosis. However, cells depending on these constructs without the insoluble domain (residues 579–797) form equatorially located rings slowly from strands rather than by direct condensation of nodes. We conclude that residues 1–578 assemble node components myosin-II, Rng2p, and Cdc15p, and the insoluble domain facilitates the normal, efficient condensation of nodes into rings.


2009 ◽  
Vol 75 (9) ◽  
pp. 2765-2774 ◽  
Author(s):  
Esben H. Hansen ◽  
Birger Lindberg Møller ◽  
Gertrud R. Kock ◽  
Camilla M. Bünner ◽  
Charlotte Kristensen ◽  
...  

ABSTRACT Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.


2019 ◽  
Author(s):  
David A. Ellis ◽  
Félix Reyes-Martín ◽  
María Rodríguez-López ◽  
Cristina Cotobal ◽  
Xi-Ming Sun ◽  
...  

AbstractAberrant repair of DNA double-strand breaks can recombine distant pairs of chromosomal breakpoints. Such chromosomal rearrangements are a hallmark of ageing and compromise the structure and function of genomes. Rearrangements are challenging to detect in non-dividing cell populations, because they reflect individually rare, heterogeneous events. The genomic distribution of de novo rearrangements in non-dividing cells, and their dynamics during ageing, remain therefore poorly characterized. Studies of genomic instability during ageing have focussed on mitochondrial DNA, small genetic variants, or proliferating cells. To gain a better understanding of genome rearrangements during cellular ageing, we focused on a single diagnostic measure – DNA breakpoint junctions – allowing us to interrogate the changing genomic landscape in non-dividing cells of fission yeast (Schizosaccharomyces pombe). Aberrant DNA junctions that accumulated with age were associated with microhomology sequences and R-loops. Global hotspots for age-associated breakpoint formation were evident near telomeric genes and linked to remote breakpoints on the same or different chromosomes, including the mitochondrial chromosome. An unexpected mechanism of genomic instability caused more local hotspots: age-associated reduction in an RNA-binding protein could trigger R-loop formation at target loci. This finding suggests that biological processes other than transcription or replication can drive genome rearrangements. Notably, we detected similar signatures of genome rearrangements that accumulated in old brain cells of humans. These findings provide insights into the unique patterns and potential mechanisms of genome rearrangements in non-dividing cells, which can be triggered by ageing-related changes in gene-regulatory proteins.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S192
Author(s):  
Akinori Shigemasa ◽  
Yoshitaka Nakayama ◽  
Takanori Iino ◽  
Hidetoshi Iida ◽  
Yoichiroh Hosokawa

Sign in / Sign up

Export Citation Format

Share Document