scholarly journals Activated Ezrin Promotes Cell Migration through Recruitment of the GEF Dbl to Lipid Rafts and Preferential Downstream Activation of Cdc42

2007 ◽  
Vol 18 (8) ◽  
pp. 2935-2948 ◽  
Author(s):  
Soren Prag ◽  
Maddy Parsons ◽  
Melanie D. Keppler ◽  
Simon M. Ameer-Beg ◽  
Paul Barber ◽  
...  

Establishment of polarized cell morphology is a critical factor for migration and requires precise spatial and temporal activation of the Rho GTPases. Here, we describe a novel role of the actin-binding ezrin/radixin/moesin (ERM)-protein ezrin to be involved in recruiting Cdc42, but not Rac1, to lipid raft microdomains, as well as the subsequent activation of this Rho GTPase and the downstream effector p21-activated kinase (PAK)1, as shown by fluorescence lifetime imaging microscopy. The establishment of a leading plasma membrane and the polarized morphology necessary for random migration are also dependent on ERM function and Cdc42 in motile breast carcinoma cells. Mechanistically, we show that the recruitment of the ERM-interacting Rho/Cdc42-specific guanine nucleotide exchange factor Dbl to the plasma membrane and to lipid raft microdomains requires the phosphorylated, active conformer of ezrin, which serves to tether the plasma membrane or its subdomains to the cytoskeleton. Together these data suggest a mechanism whereby precise spatial guanine nucleotide exchange of Cdc42 by Dbl is dependent on functional ERM proteins and is important for directional cell migration.

2019 ◽  
Author(s):  
Nathalie R. Reinhard ◽  
Sanne van der Niet ◽  
Anna Chertkova ◽  
Marten Postma ◽  
Peter L. Hordijk ◽  
...  

AbstractThe Rho GTPase family is involved in actin dynamics and regulates the barrier function of the endothelium. One of the main barrier-promoting Rho GTPases is Cdc42, also known as cell division control protein 42 homolog. Currently, regulation of Cdc42-based signaling networks in endothelial cells (ECs) lack molecular details. To examine these, we focused on a subset of 15 Rho guanine nucleotide exchange factors (GEFs), which are expressed in the endothelium. By performing single cell FRET measurements with Rho GTPase biosensors in primary human ECs, we monitored GEF efficiency towards Cdc42 and Rac1. A new, single cell-based analysis was developed and used to enable the quantitative comparison of cellular activities of the full-length GEFs. Our data reveal a specific GEF dependent activation profile, with most efficient Cdc42 activation induced by PLEKHG2, FGD1, PLEKHG1 and pRex1 and the highest selectivity for FGD1. Additionally, we generated truncated GEF constructs that comprise only the catalytic dbl homology (DH) domain or together with the adjacent pleckstrin homology domain (DHPH). The DH domain by itself did not activate Cdc42, whereas the DHPH domain of ITSN1, ITSN2 and PLEKHG1 showed activity towards Cdc42. Together, our study characterized endothelial GEFs that may activate Cdc42, which will be of great value for the field of vascular biology.Abstract FigureGraphical Abstract


2008 ◽  
Vol 181 (2) ◽  
pp. 351-365 ◽  
Author(s):  
Junji Yamauchi ◽  
Yuki Miyamoto ◽  
Jonah R. Chan ◽  
Akito Tanoue

The cellular events that precede myelination in the peripheral nervous system require rapid and dynamic morphological changes in the Schwann cell. These events are thought to be mainly controlled by axonal signals. But how signals on the axons are coordinately organized and transduced to promote proliferation, migration, radial sorting, and myelination is unknown. We describe that the axonal signal neuregulin-1 (NRG1) controls Schwann cell migration via activation of the atypical Dock180-related guanine nucleotide exchange factor (GEF) Dock7 and subsequent activation of the Rho guanine triphosphatases (GTPases) Rac1 and Cdc42 and the downstream c-Jun N-terminal kinase. We show that the NRG1 receptor ErbB2 directly binds and activates Dock7 by phosphorylating Tyr-1118. Dock7 knockdown, or expression of Dock7 harboring the Tyr-1118–to–Phe mutation in Schwann cells, attenuates the effects of NRG1. Thus, Dock7 functions as an intracellular substrate for ErbB2 to promote Schwann cell migration. This provides an unanticipated mechanism through which ligand-dependent tyrosine phosphorylation can trigger the activation of Rho GTPase-GEFs of the Dock180 family.


1999 ◽  
Vol 112 (12) ◽  
pp. 1825-1834 ◽  
Author(s):  
K. Seipel ◽  
Q.G. Medley ◽  
N.L. Kedersha ◽  
X.A. Zhang ◽  
S.P. O'Brien ◽  
...  

Rho family GTPases regulate diverse cellular processes, including extracellular signal-mediated actin cytoskeleton reorganization and cell growth. The functions of GTPases are positively regulated by guanine nucleotide exchange factors, which promote the exchange of GDP for GTP. Trio is a complex protein possessing two guanine nucleotide exchange factor domains, each with adjacent pleckstrin homology and SH3 domains, a protein serine/threonine kinase domain with an adjacent immunoglobulin-like domain and multiple spectrin-like domains. To assess the functional role of the two Trio guanine nucleotide exchange factor domains, NIH 3T3 cell lines stably expressing the individual guanine nucleotide exchange factor domains were established and characterized. Expression of the amino-terminal guanine nucleotide exchange factor domain results in prominent membrane ruffling, whereas cells expressing the carboxy-terminal guanine nucleotide exchange factor domain have lamellae that terminate in miniruffles. Moreover, cells expressing the amino-terminal guanine nucleotide exchange factor domain display more rapid cell spreading, haptotactic cell migration and anchorage-independent growth, suggesting that Trio regulates both cell motility and cell growth. Expression of full-length Trio in COS cells also alters actin cytoskeleton organization, as well as the distribution of focal contact sites. These findings support a role for Trio as a multifunctional protein that integrates and amplifies signals involved in coordinating actin remodeling, which is necessary for cell migration and growth.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1859
Author(s):  
Laura Streit ◽  
Laurent Brunaud ◽  
Nicolas Vitale ◽  
Stéphane Ory ◽  
Stéphane Gasman

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.


2005 ◽  
Vol 281 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Yu Li ◽  
Sirisha Asuri ◽  
John F. Rebhun ◽  
Ariel F. Castro ◽  
Nivanka C. Paranavitana ◽  
...  

2019 ◽  
Vol 12 (569) ◽  
pp. eaav2449 ◽  
Author(s):  
Sumit J. Bandekar ◽  
Nadia Arang ◽  
Ena S. Tully ◽  
Brittany A. Tang ◽  
Brenna L. Barton ◽  
...  

The C-terminal guanine nucleotide exchange factor (GEF) module of Trio (TrioC) transfers signals from the Gαq/11subfamily of heterotrimeric G proteins to the small guanosine triphosphatase (GTPase) RhoA, enabling Gαq/11-coupled G protein–coupled receptors (GPCRs) to control downstream events, such as cell motility and gene transcription. This conserved signal transduction axis is crucial for tumor growth in uveal melanoma. Previous studies indicate that the GEF activity of the TrioC module is autoinhibited, with release of autoinhibition upon Gαq/11binding. Here, we determined the crystal structure of TrioC in its basal state and found that the pleckstrin homology (PH) domain interacts with the Dbl homology (DH) domain in a manner that occludes the Rho GTPase binding site, thereby suggesting the molecular basis of TrioC autoinhibition. Biochemical and biophysical assays revealed that disruption of the autoinhibited conformation destabilized and activated the TrioC module in vitro. Last, mutations in the DH-PH interface found in patients with cancer activated TrioC and, in the context of full-length Trio, led to increased abundance of guanosine triphosphate–bound RhoA (RhoA·GTP) in human cells. These mutations increase mitogenic signaling through the RhoA axis and, therefore, may represent cancer drivers operating in a Gαq/11-independent manner.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Brock A. Humphries ◽  
Zhishan Wang ◽  
Chengfeng Yang

The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.


Sign in / Sign up

Export Citation Format

Share Document