lipid raft microdomains
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 11)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shimin Jiang ◽  
Tai Zhou ◽  
Kejia Zhang ◽  
Yao Zhou ◽  
Zhongcheng Wang ◽  
...  

Abstract Recent studies have shown that monosialoganglioside GM1 deficiency can inhibit the signal transduction process of glial cell line-derived neurotrophic factor (GDNF), which plays an important role in the pathogenesis of Parkinson's disease (PD). However, its specific mechanism still needs to be explored. We inhibited the expression of GM1 by treating cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). CCK-8 assay, EdU cell proliferation assay and Western blot assay were used to evaluate the effect of GM1 deficiency on the proliferation and differentiation of SH-SY5Y cells induced by GDNF and on the GDNF-RET signaling pathway. Lipid rafts were isolated by Triton X-100 solubilization and OptiPrepTM density gradient centrifugation. The alterations of lipid raft assembly and the translocation of RET into lipid rafts were evaluated after PDMP treatment. We found that PDMP treatment inhibited the proliferation and differentiation of SH-SY5Y cells induced by GDNF and reduced the phosphorylation of RET and its downstream signaling molecules Erk and Akt. In addition, after PDMP treatment, caveolin-1 and flotillin-1, the prototypical markers of lipid rafts, diffused from lipid rafts to non-lipid raft microdomains, and GDNF-induced RET translocation into lipid rafts was also reduced. These alterations could be partially reversed by adding exogenous GM1. Our results suggest that ganglioside GM1 deficiency could compromise the neurotrophic effects and signals downstream of GDNF by altering the assembly of lipid raft membrane microdomains.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 909
Author(s):  
Oh-Hoon Kwon ◽  
Yoon Young Cho ◽  
Jung Hee Lee ◽  
Sungkwon Chung

Like protein phosphorylation, O-GlcNAcylation is a common post-translational protein modification. We already reported that O-GlcNAcylation of amyloid precursor protein (APP) in response to insulin signaling reduces neurotoxic amyloid-β (Aβ) production via inhibition of APP endocytosis. Internalized APP is delivered to endosomes and lysosomes where Aβ is produced. However, the molecular mechanism involved in the effect of APP O-GlcNAcylation on APP trafficking remains unknown. To investigate the relationship between APP O-GlcNAcylation and APP endocytosis, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing APP and BACE1, and cultured rat hippocampal neurons. The present study showed that APP O-GlcNAcylation translocated APP from lipid raft to non-raft microdomains in the plasma membrane by using immunocytochemistry and discontinuous sucrose gradients method. By using the biotinylation method, we also found that APP preferentially underwent endocytosis from lipid rafts and that the amount of internalized APP from lipid rafts was specifically reduced by O-GlcNAcylation. These results indicate that O-GlcNAcylation can regulate lipid raft-dependent APP endocytosis via translocation of APP into non-raft microdomains. Our findings showed a new functional role of O-GlcNAcylation for the regulation of APP trafficking, offering new mechanistic insight for Aβ production.


2021 ◽  
Author(s):  
Yao Lv ◽  
Chu-di Zhang ◽  
Yi-long Wang ◽  
Dong-ming Zhou ◽  
Meng-ying Zhu ◽  
...  

Abstract Background DDP-based chemotherapy is one of the first-line treatment in GC. However, the therapeutic efficacy of DDP is limited due to side effects. Therefore, it is of great significance to develop novel adjuvants to synergize with DDP. We had demonstrated previously that rMV-Hu191 had antitumor activity in GC. Here we examined the synergism of rMV-Hu191 with DDP in vitro and in vivo. Methods Cellular proliferation, the synergistic effect and cell apoptosis were evaluated by CCK-8 assay, ZIP analysis and flow cytometry, respectively. The protein levels and location of ASMase were monitored by western blot and immunofluorescence assay. shRNA and imipramine were used to regulate the expression and activity of ASMase. MβCD was administrated to disrupt lipid rafts. Mice bearing GC xenografts were used to confirm the synergism in vivo. Results From our data, combinational therapy demonstrated synergistic cytotoxicity both in resistant GC cell lines from a Chinese patient and drug-nonresistant GC cell lines, and increased cell apoptosis, instead of viral replication. Integrity of lipid rafts and ASMase were required for rMV-Hu191- and combination-induced apoptosis. The ASMase was delivered to the lipid raft microdomains at the initial stage of rMV-Hu191 treatment. In vivo GC mice xenografts confirmed the synergism of combinational treatment, together with increased apoptosis and trivial side-effects. Conclusions This is the first study to demonstrate that rMV-Hu191 combined with DDP could be used as a potential therapeutic strategy in GC treatment and the ASMase and the integrity of lipid rafts are required for the synergistic effects.


2021 ◽  
Vol 22 (9) ◽  
pp. 5009
Author(s):  
Marc Hernaiz-Llorens ◽  
Ramón Martínez-Mármol ◽  
Cristina Roselló-Busquets ◽  
Eduardo Soriano

Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5490
Author(s):  
Yoon Young Cho ◽  
Oh-Hoon Kwon ◽  
Sungkwon Chung

Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.


Author(s):  
Marc Hernaiz-Llorens ◽  
Cristina Roselló-Busquets ◽  
Nela Durisic ◽  
Adam Filip ◽  
Fausto Ulloa ◽  
...  

Abstract During brain development, Uncoordinated locomotion 5 (UNC5) receptors control axonal extension through their sensing of the guidance molecule Netrin-1. The correct positioning of receptors into cholesterol-enriched membrane raft microdomains is crucial for the efficient transduction of the recognized signals. However, whether such microdomains are required for the appropriate axonal guidance mediated by UNC5 receptors remains unknown. Here, we combine the use of confocal microscopy, live-cell FRAP analysis and single-particle tracking PALM to characterize the distribution of UNC5 receptors into raft microdomains, revealing differences in their membrane mobility properties. Using pharmacological and genetic approaches in primary neuronal cultures and brain cerebellar explants we further demonstrate that disrupting raft microdomains inhibits the chemorepulsive response of growth cones and axons against Netrin-1. Together, our findings indicate that the distribution of all UNC5 receptors into cholesterol-enriched raft microdomains is heterogeneous and that the specific localization has functional consequences for the axonal chemorepulsion against Netrin-1.


Author(s):  
Denghui Wei ◽  
Weixiang Zhan ◽  
Ying Gao ◽  
Liyan Huang ◽  
Run Gong ◽  
...  

Abstract Exosomes are generated within the multivesicular endosomes (MVEs) as intraluminal vesicles (ILVs) and secreted during the fusion of MVEs with the cell membrane. The mechanisms of exosome biogenesis remain poorly explored. Here we identify that RAB31 marks and controls an ESCRT-independent exosome pathway. Active RAB31, phosphorylated by epidermal growth factor receptor (EGFR), engages flotillin proteins in lipid raft microdomains to drive EGFR entry into MVEs to form ILVs, which is independent of the ESCRT (endosomal sorting complex required for transport) machinery. Active RAB31 interacts with the SPFH domain and drives ILV formation via the Flotillin domain of flotillin proteins. Meanwhile, RAB31 recruits GTPase-activating protein TBC1D2B to inactivate RAB7, thereby preventing the fusion of MVEs with lysosomes and enabling the secretion of ILVs as exosomes. These findings establish that RAB31 has dual functions in the biogenesis of exosomes: driving ILVs formation and suppressing MVEs degradation, providing an exquisite framework to better understand exosome biogenesis.


2020 ◽  
Author(s):  
Yoon Young Cho ◽  
Oh-Hoon Kwon ◽  
Sungkwon Chung

AbstractAmyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis, and delivered to endosomes and lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to non-raft localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results indicate that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.


2019 ◽  
Author(s):  
Franziska Schmidt ◽  
Andreas Thywißen ◽  
Marie Röcker ◽  
Cristina Cunha ◽  
Zoltán Cseresnyés ◽  
...  

SUMMARYLipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid raft microdomains are essential components of the phagolysosomal membrane of macrophages. Genetic deletion of the lipidraft chaperons flotillin-1 and flotillin-2 demonstrate that the assembly of both major defense complexes vATPase and NADPH oxidase on the phagolysosomal membrane requires lipid rafts. Furthermore, we discovered a new virulence mechanism leading to the dysregulation of lipid-raft formation by melanized wild-type conidia of the important human-pathogenic fungusAspergillus fumigatus. This results in reduced phagolysosomal acidification. Phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca2+ions as compared to phagolysosomes with melanin-free conidia. In agreement with a role of Ca2+for generation of functional lipid rafts, we show that Ca2+-dependent calmodulin activity is required for lipid-raft formation on the phagolysosome. We identified a single nucleotide polymorphism in the humanFLOT1gene that results in heightened susceptibility for invasive aspergillosis in hematopoietic stem-cell transplant recipients. Collectively, flotillin-dependent lipid rafts on the phagolysosomal membrane play an essential role in protective antifungal immunity in humans.


Sign in / Sign up

Export Citation Format

Share Document