scholarly journals Regulation of Ubiquitin-Proteasome System–mediated Degradation by Cytosolic Stress

2007 ◽  
Vol 18 (11) ◽  
pp. 4279-4291 ◽  
Author(s):  
Sean M. Kelly ◽  
Judy K. VanSlyke ◽  
Linda S. Musil

ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42°C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.

2011 ◽  
Vol 22 (16) ◽  
pp. 2797-2809 ◽  
Author(s):  
Yoshihiro Matsumura ◽  
Larry L. David ◽  
William R. Skach

The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.


1996 ◽  
Vol 271 (1) ◽  
pp. C188-C193 ◽  
Author(s):  
A. Y. Leung ◽  
P. Y. Wong ◽  
J. R. Yankaskas ◽  
R. C. Boucher

Cystic fibrosis (CF) reflects the loss of adenosine 3',5'-cyclic monophosphate (cAMP)-regulated Cl- secretion consequent to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In humans, but not mice, with CF, the disease is associated with male infertility. The present study investigated the relative magnitudes of the cAMP pathways and an alternative Ca(2+)-regulated Cl- secretory pathway in primary cultures of the epididymides and the seminal vesicles of normal and CF mice. The basal equivalent short-circuit currents (Ieq) of cultures derived from the epididymides and the seminal vesicles from the CF mice were lower (6.0 +/- 0.6 and 4.0 +/- 1.0 muA/cm2, respectively) than those from normal mice (11.1 +/- 1.0 and 6.6 +/- 0.6 muA/cm2, respectively). Forskolin induced significant Ieq responses in both the epididymis (8.0 +/- 0.7 muA/cm2) and seminal vesicles (4.0 +/- 0.5 muA/cm2) from normal mice, whereas forskolin-induced changes in Ieq in CF mouse epididymis and seminal vesicles were absent, consistent with defective cAMP-CFTR-mediated Cl- secretion in CF mice. Ieq responses to agonists (ionomycin, ATP) that raise intracellular Ca2+ (Ca2+i) were larger than forskolin responses in normal animals (6.6 +/- 0.9 and 13.4 +/- 1.8 muA/cm2, respectively) and were preserved in CF (6.5 +/- 0.9 and 17.1 +/- 1.0 muA/cm2, respectively). We speculate that the fertility of male CF mice is maintained by persistent expression of the predominant alternative Ca(2+)-mediated Cl- transport system in the epididymides and seminal vesicles.


2004 ◽  
Vol 15 (2) ◽  
pp. 563-574 ◽  
Author(s):  
Tsukasa Okiyoneda ◽  
Kazutsune Harada ◽  
Motohiro Takeya ◽  
Kaori Yamahira ◽  
Ikuo Wada ◽  
...  

The most common cystic fibrosis transmembrane conductance regulator (CFTR) mutant in cystic fibrosis patients, ΔF508 CFTR, is retained in the endoplasmic reticulum (ER) and is consequently degraded by the ubiquitin-proteasome pathway known as ER-associated degradation (ERAD). Because the prolonged interaction of ΔF508 CFTR with calnexin, an ER chaperone, results in the ERAD of ΔF508 CFTR, calnexin seems to lead it to the ERAD pathway. However, the role of calnexin in the ERAD is controversial. In this study, we found that calnexin overexpression partially attenuated the ERAD of ΔF508 CFTR. We observed the formation of concentric membranous bodies in the ER upon calnexin overexpression and that the ΔF508 CFTR but not the wild-type CFTR was retained in the concentric membranous bodies. Furthermore, we observed that calnexin overexpression moderately inhibited the formation of aggresomes accumulating the ubiquitinated ΔF508 CFTR. These findings suggest that the overexpression of calnexin may be able to create a pool of ΔF508 CFTR in the ER.


1999 ◽  
Vol 79 (1) ◽  
pp. S167-S173 ◽  
Author(s):  
RON R. KOPITO

Kopito, Ron R. Biosynthesis and Degradation of CFTR. Physiol. Rev. 79, Suppl.: S167–S173, 1999. — Many of the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause cystic fibrosis interfere with the folding and biosynthetic processing of nascent CFTR molecules in the endoplasmic reticulum. Mutations in the cytoplasmic nucleotide binding domains, including the common allele ΔF508, decrease the efficiency of CFTR folding, reduce the probability of its dissociation from molecular chaperones, and largely prevent its maturation through the secretory pathway to the plasma membrane. These mutant CFTR molecules are rapidly degraded by cytoplasmic proteasomes by a process that requires covalent modification by multiubiquitination. The effects of temperature and chemical chaperones on the intracellular processing of mutant CFTR molecules suggest that strategies aimed at increasing the folding yield of this protein in vivo may eventually lead to the development of novel therapies for cystic fibrosis.


2013 ◽  
Vol 24 (2) ◽  
pp. 74-84 ◽  
Author(s):  
Annette Ahner ◽  
Xiaoyan Gong ◽  
Bela Z. Schmidt ◽  
Kathryn W. Peters ◽  
Wael M. Rabeh ◽  
...  

Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27’s ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4’s impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin–proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.


2002 ◽  
Vol 366 (3) ◽  
pp. 797-806 ◽  
Author(s):  
Carlos M. FARINHA ◽  
Paulo NOGUEIRA ◽  
Filipa MENDES ◽  
Deborah PENQUE ◽  
Margarida D. AMARAL

The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.


2001 ◽  
Vol 281 (1) ◽  
pp. L58-L68 ◽  
Author(s):  
Lee R. Choo-Kang ◽  
Pamela L. Zeitlin

The ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) is a temperature-sensitive trafficking mutant that is detected as an immature 160-kDa form (band B) in gel electrophoresis. The goal of this study was to test the hypothesis that HSP70, a member of the 70-kDa heat shock protein family, promotes ΔF508 CFTR processing to the mature 180-kDa form (band C). Both pharmacological and genetic techniques were used to induce HSP70. IB3-1 cells were treated with sodium 4-phenylbutyrate (4PBA) to promote maturation of ΔF508 CFTR to band C. A dose-dependent increase in band C and total cellular HSP70 was observed. Under these conditions, HSP70-CFTR complexes were increased and 70-kDa heat shock cognate protein-CFTR complexes were decreased. Increased ΔF508 CFTR maturation was also seen after transfection with an HSP70 expression plasmid and exposure to glutamine, an inducer of HSP70. With immunofluorescence techniques, the increased appearance of CFTR band C correlated with CFTR distribution beyond the perinuclear regions. These data suggest that induction of HSP70 promotes ΔF508 CFTR maturation and trafficking.


2021 ◽  
Vol 22 (8) ◽  
pp. 4252
Author(s):  
Stéphanie Simon ◽  
Abdel Aissat ◽  
Fanny Degrugillier ◽  
Benjamin Simonneau ◽  
Pascale Fanen ◽  
...  

Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal and pathological cells. Here, we have reviewed the role played by HspB1, HspB4 and HspB5 in the context of Cystic Fibrosis (CF), a severe monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane conductance Regulator protein (CFTR) some of which trigger its misfolding and rapid degradation, particularly the most frequent one, F508del-CFTR. While HspB1 and HspB4 favor the degradation of CFTR mutants, HspB5 and particularly one of its phosphorylated forms positively enhance the transport at the plasma membrane, stability and function of the CFTR mutant. Moreover, HspB5 molecules stimulate the cellular efficiency of currently used CF therapeutic molecules. Different strategies are suggested to modulate the level of expression or the activity of these small heat shock proteins in view of potential in vivo therapeutic approaches. We then conclude with other small heat shock proteins that should be tested or further studied to improve our knowledge of CFTR processing.


Sign in / Sign up

Export Citation Format

Share Document