scholarly journals Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum–associated degradation

2011 ◽  
Vol 22 (16) ◽  
pp. 2797-2809 ◽  
Author(s):  
Yoshihiro Matsumura ◽  
Larry L. David ◽  
William R. Skach

The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.

2004 ◽  
Vol 15 (2) ◽  
pp. 563-574 ◽  
Author(s):  
Tsukasa Okiyoneda ◽  
Kazutsune Harada ◽  
Motohiro Takeya ◽  
Kaori Yamahira ◽  
Ikuo Wada ◽  
...  

The most common cystic fibrosis transmembrane conductance regulator (CFTR) mutant in cystic fibrosis patients, ΔF508 CFTR, is retained in the endoplasmic reticulum (ER) and is consequently degraded by the ubiquitin-proteasome pathway known as ER-associated degradation (ERAD). Because the prolonged interaction of ΔF508 CFTR with calnexin, an ER chaperone, results in the ERAD of ΔF508 CFTR, calnexin seems to lead it to the ERAD pathway. However, the role of calnexin in the ERAD is controversial. In this study, we found that calnexin overexpression partially attenuated the ERAD of ΔF508 CFTR. We observed the formation of concentric membranous bodies in the ER upon calnexin overexpression and that the ΔF508 CFTR but not the wild-type CFTR was retained in the concentric membranous bodies. Furthermore, we observed that calnexin overexpression moderately inhibited the formation of aggresomes accumulating the ubiquitinated ΔF508 CFTR. These findings suggest that the overexpression of calnexin may be able to create a pool of ΔF508 CFTR in the ER.


2007 ◽  
Vol 18 (11) ◽  
pp. 4279-4291 ◽  
Author(s):  
Sean M. Kelly ◽  
Judy K. VanSlyke ◽  
Linda S. Musil

ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42°C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.


2013 ◽  
Vol 24 (5) ◽  
pp. 633-642 ◽  
Author(s):  
Shogo Kakoi ◽  
Tomohiro Yorimitsu ◽  
Ken Sato

Proteins that fail to fold in the endoplasmic reticulum (ER) are subjected to ER-associated degradation (ERAD). Certain transmembrane ERAD substrates are segregated into specialized ER subdomains, termed ER-associated compartments (ERACs), before targeting to ubiquitin–proteasome degradation. The traffic-independent function of several proteins involved in COPII-mediated ER-to-Golgi transport have been implicated in the segregation of exogenously expressed human cystic fibrosis transmembrane conductance regulator (CFTR) into ERACs in Saccharomyces cerevisiae. Here we focus on the properties of COPII components in the sequestration of enhanced green fluorescent protein (EGFP)–CFTR into ERACs. It has been demonstrated that the temperature-sensitive growth defects in many COPII mutants can be suppressed by overexpressing other genes involved in COPII vesicle formation. However, we show that these suppression abilities are not always correlated with the ability to rescue the ERAC formation defect, suggesting that COPII-mediated EGFP-CFTR entry into ERACs is independent of its ER-to-Golgi trafficking function. In addition to COPII machinery, we find that ER-associated Hsp40s are also involved in the sequestration process by directly interacting with EGFP-CFTR. COPII components and ER-associated Hsp40, Hlj1p, act in the same pathway to sequester EGFP-CFTR into ERACs. Our findings point to an as-yet-undefined role of COPII proteins in the formation of ERACs.


1996 ◽  
Vol 271 (2) ◽  
pp. C650-C657 ◽  
Author(s):  
W. W. Reenstra ◽  
K. Yurko-Mauro ◽  
A. Dam ◽  
S. Raman ◽  
S. Shorten

We have previously shown [B. Illek, H. Fischer, G. F. Santos, J. H. Widdicombe, T. E. Machen, and W. W. Reenstra, Am. J. Physiol. 268 (Cell Physiol. 37): C886-C893, 1995] that genistein, a tyrosine kinase inhibitor, activates the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in NIH/3T3 cells that have been stably transfected with an expression vector for the CFTR (NIH-CFTR cells). In this study, we present evidence suggesting that both genistein and the serine/threonine protein phosphatase (PPase) inhibitor calyculin A activate the CFTR by inhibiting PPase activity. As measured by 125I efflux, genistein and calyculin A stimulate the CFTR to approximately 50% of the maximal activity with forskolin. Neither agonist increases CFTR activity at saturating forskolin concentrations, but genistein and calyculin A have an additive effect on CFTR activity. Forskolin, but neither genistein nor calyculin A, stimulates protein kinase A(PKA) activity. The PKA inhibitor H-89 inhibits CFTR activation and in vivo phosphorylation by all three agonists. Proteolytic digestion of in vivo phosphorylated CFTR suggests that the CFTR is phosphorylated on the same sites during stimulation with genistein and forskolin but on different sites stimulation with calyculin A. The data suggest that genistein and calyculin A inhibit different PPase activities, allowing CFTR phosphorylation and partial stimulation, by a basal PKA activity.


1999 ◽  
Vol 277 (6) ◽  
pp. C1160-C1169 ◽  
Author(s):  
Adriana G. Prat ◽  
C. Casey Cunningham ◽  
G. Robert Jackson ◽  
Steven C. Borkan ◽  
Yihan Wang ◽  
...  

Previous studies have indicated a role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. However, the exact molecular nature of this regulation is still largely unknown. In this report human epithelial CFTR was expressed in human melanoma cells genetically devoid of the filamin homologue actin-cross-linking protein ABP-280 [ABP(−)]. cAMP stimulation of ABP(−) cells or cells genetically rescued with ABP-280 cDNA [ABP(+)] was without effect on whole cell Cl− currents. In ABP(−) cells expressing CFTR, cAMP was also without effect on Cl− conductance. In contrast, cAMP induced a 10-fold increase in the diphenylamine-2-carboxylate (DPC)-sensitive whole cell Cl− currents of ABP(+)/CFTR(+) cells. Further, in cells expressing both CFTR and a truncated form of ABP-280 unable to cross-link actin filaments, cAMP was also without effect on CFTR activation. Dialysis of ABP-280 or filamin through the patch pipette, however, resulted in a DPC-inhibitable increase in the whole cell currents of ABP(−)/CFTR(+) cells. At the single-channel level, protein kinase A plus ATP activated single Cl−channels only in excised patches from ABP(+)/CFTR(+) cells. Furthermore, filamin alone also induced Cl− channel activity in excised patches of ABP(−)/CFTR(+) cells. The present data indicate that an organized actin cytoskeleton is required for cAMP-dependent activation of CFTR.


Reproduction ◽  
2012 ◽  
Vol 143 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Sayaka Koyanagi ◽  
Hiroko Hamasaki ◽  
Satoshi Sekiguchi ◽  
Kenshiro Hara ◽  
Yoshiyuki Ishii ◽  
...  

Maternal proteins are rapidly degraded by the ubiquitin–proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficientgad. Furthermore, we assessed morphological features ingadmouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the ‘maternal antigen that embryos require’ (NLRP5 (MATER)) protein level increased significantly ingadmouse ova compared with that in wild-type mice. In an ultrastructural study,gadmouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.


Sign in / Sign up

Export Citation Format

Share Document