scholarly journals Specific Activation of Mitogen-activated Protein Kinase by Transforming Growth Factor-β Receptors in Lipid Rafts Is Required for Epithelial Cell Plasticity

2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.

2002 ◽  
Vol 115 (15) ◽  
pp. 3193-3206 ◽  
Author(s):  
Andrei V. Bakin ◽  
Cammie Rinehart ◽  
Anne K. Tomlinson ◽  
Carlos L. Arteaga

Transforming growth factor β (TGFβ) contributes to tumor progression by inducing an epithelial to mesenchymal transdifferentiation(EMT) and cell migration. We found that TGFβ-induced EMT was blocked by inhibiting activation of p38 mitogen-activated protein kinase (MAPK) with H-7,a protein kinase C inhibitor, and with SB202190, a direct inhibitor of p38MAPK. Inhibition of the p38MAPK pathway affected TGFβ-mediated phosphorylation of ATF2, but did not inhibit phosphorylation of Smad2. SB202190 impaired TGFβ-mediated changes in cell shape and reorganization of the actin cytoskeleton. Forced expression of dominant-negative (DN) MAPK kinase 3 (MKK3) inhibited TGFβ-mediated activation of p38MAPK and EMT. Expression of DN-p38α impaired TGFβ-induced EMT. Inhibition of p38MAPK blocked TGFβ-induced migration of non-tumor and tumor mammary epithelial cells. TGFβ induced activation of the p38MAPK pathway within 15 minutes. Expression of TGFβ type II (TβRII) and type I(TβRI/Alk5) kinase-inactive receptors blocked EMT and activation of p38MAPK, whereas expression of constitutively active Alk5-T204D resulted in EMT and phosphorylation of MKK3/6 and p38MAPK. Finally, dominant-negative Rac1N17 blocked TGFβ-induced activation of the p38MAPK pathway and EMT,suggesting that Rac1 mediates activation of the p38MAPK pathway. These studies suggest that the p38MAPK pathway is required for TGFβ-mediated EMT and cell migration.


Sign in / Sign up

Export Citation Format

Share Document