scholarly journals Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway

2012 ◽  
Vol 23 (14) ◽  
pp. 2805-2817 ◽  
Author(s):  
A. Belén Sanz ◽  
Raúl García ◽  
Jose Manuel Rodríguez-Peña ◽  
Sonia Díez-Muñiz ◽  
César Nombela ◽  
...  

In Saccharomyces cerevisiae, the transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, the mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, and is mostly mediated by the transcription factor Rlm1. Here we show that the SWI/SNF chromatin-remodeling complex plays a critical role in orchestrating the transcriptional response regulated by Rlm1. swi/snf mutants show drastically reduced expression of cell wall stress–responsive genes and hypersensitivity to cell wall–interfering compounds. On stress, binding of RNA Pol II to the promoters of these genes depends on Rlm1, Slt2, and SWI/SNF. Rlm1 physically interacts with SWI/SNF to direct its association to target promoters. Finally, we observe nucleosome displacement at the CWI-responsive gene MLP1/KDX1, which relies on the SWI/SNF complex. Taken together, our results identify the SWI/SNF complex as a key element of the CWI MAPK pathway that mediates the chromatin remodeling necessary for adequate transcriptional response to cell wall stress.

2010 ◽  
Vol 21 (9) ◽  
pp. 1609-1619 ◽  
Author(s):  
Ki-Young Kim ◽  
Andrew W. Truman ◽  
Stefanie Caesar ◽  
Gabriel Schlenstedt ◽  
David E. Levin

The yeast SBF transcription factor is a heterodimer comprised of Swi4 and Swi6 that has a well defined role in cell cycle-specific transcription. SBF serves a second function in the transcriptional response to cell wall stress in which activated Mpk1 mitogen-activated protein kinase of the cell wall integrity signaling pathway forms a complex with Swi4, the DNA binding subunit of SBF, conferring upon Swi4 the ability to bind DNA and activate transcription of FKS2. Although Mpk1–Swi4 complex formation and transcriptional activation of FKS2 does not require Mpk1 catalytic activity, Swi6 is phosphorylated by Mpk1 and must be present in the Mpk1-Swi4 complex for transcriptional activation of FKS2. Here, we find that Mpk1 regulates Swi6 nucleocytoplasmic shuttling in a biphasic manner. First, formation of the Mpk1-Swi4 complex recruits Swi6 to the nucleus for transcriptional activation. Second, Mpk1 negatively regulates Swi6 by phosphorylation on Ser238, which inhibits nuclear entry. Ser238 neighbors a nuclear localization signal (NLS) whose function is blocked by phosphorylation at Ser238 in a manner similar to the regulation by Cdc28 of another Swi6 NLS, revealing a mechanism for the integration of multiple signals to a single endpoint. Finally, the Kap120 β-importin binds the Mpk1-regulated Swi6 NLS but not the Cdc28-regulated NLS.


1999 ◽  
Vol 147 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Pierre-Alain Delley ◽  
Michael N. Hall

Cells sense and physiologically respond to environmental stress via signaling pathways. Saccharomyces cerevisiae cells respond to cell wall stress by transiently depolarizing the actin cytoskeleton. We report that cell wall stress also induces a transient depolarized distribution of the cell wall biosynthetic enzyme glucan synthase FKS1 and its regulatory subunit RHO1, possibly as a mechanism to repair general cell wall damage. The redistribution of FKS1 is dependent on the actin cytoskeleton. Depolarization of the actin cytoskeleton and FKS1 is mediated by the plasma membrane protein WSC1, the RHO1 GTPase switch, PKC1, and a yet-to-be defined PKC1 effector branch. WSC1 behaves like a signal transducer or a stress-specific actin landmark that both controls and responds to the actin cytoskeleton, similar to the bidirectional signaling between integrin receptors and the actin cytoskeleton in mammalian cells. The PKC1-activated mitogen-activated protein kinase cascade is not required for depolarization, but rather for repolarization of the actin cytoskeleton and FKS1. Thus, activated RHO1 can mediate both polarized and depolarized cell growth via the same effector, PKC1, suggesting that RHO1 may function as a rheostat rather than as a simple on-off switch.


2009 ◽  
Vol 20 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Thomas Scrimale ◽  
Louis Didone ◽  
Karen L. de Mesy Bentley ◽  
Damian J. Krysan

The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expression of misfolded proteins show phenotypes similar to mutation of cell wall proteins, including hypersensitivity to cell wall-targeted molecules, alterations to cell wall protein layer, decreased cell wall thickness by electron microscopy, and increased cellular aggregation. Consistent with its important role in cell wall integrity, UPR is activated by signaling through the cell wall integrity mitogen-activated protein (MAP) kinase pathway during cell wall stress and unstressed vegetative growth. Both cell wall stress and basal UPR activity is mediated by Swi6p, a regulator of cell cycle and cell wall stress gene transcription, in a manner that is independent of its known coregulatory molecules. We propose that the cellular responses to ER and cell wall stress are coordinated to buffer the cell against these two related cellular stresses.


2009 ◽  
Vol 8 (8) ◽  
pp. 1118-1133 ◽  
Author(s):  
Barbara Birkaya ◽  
Abhiram Maddi ◽  
Jyoti Joshi ◽  
Stephen J. Free ◽  
Paul J. Cullen

ABSTRACT Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATα2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATα2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ß-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ß-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Nisarut Udom ◽  
Pakkanan Chansongkrow ◽  
Varodom Charoensawan ◽  
Choowong Auesukaree

ABSTRACT During fermentation, a high ethanol concentration is a major stress that influences the vitality and viability of yeast cells, which in turn leads to a termination of the fermentation process. In this study, we show that the BCK1 and SLT2 genes encoding mitogen-activated protein kinase kinase kinase (MAPKKK) and mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, respectively, are essential for ethanol tolerance, suggesting that the CWI pathway is involved in the response to ethanol-induced cell wall stress. Upon ethanol exposure, the CWI pathway induces the expression of specific cell wall-remodeling genes, including FKS2, CRH1, and PIR3 (encoding β-1,3-glucan synthase, chitin transglycosylase, and O-glycosylated cell wall protein, respectively), which eventually leads to the remodeling of the cell wall structure. Our results revealed that in response to ethanol stress, the high-osmolarity glycerol (HOG) pathway plays a collaborative role with the CWI pathway in inducing cell wall remodeling via the upregulation of specific cell wall biosynthesis genes such as the CRH1 gene. Furthermore, the substantial expression of CWI-responsive genes is also triggered by external hyperosmolarity, suggesting that the adaptive changes in the cell wall are crucial for protecting yeast cells against not only cell wall stress but also osmotic stress. On the other hand, the cell wall stress-inducing agent calcofluor white has no effect on promoting the expression of GPD1, a major target gene of the HOG pathway. Collectively, these findings suggest that during ethanol stress, the CWI and HOG pathways collaboratively regulate the transcription of specific cell wall biosynthesis genes, thereby leading to adaptive changes in the cell wall. IMPORTANCE The budding yeast Saccharomyces cerevisiae has been widely used in industrial fermentations, including the production of alcoholic beverages and bioethanol. During fermentation, an increased ethanol concentration is the main stress that affects yeast metabolism and inhibits ethanol production. This work presents evidence that in response to ethanol stress, both CWI and HOG pathways cooperate to control the expression of cell wall-remodeling genes in order to build the adaptive strength of the cell wall. These findings will contribute to a better understanding of the molecular mechanisms underlying adaptive responses and tolerance of yeast to ethanol stress, which is essential for successful engineering of yeast strains for improved ethanol tolerance.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Raúl García ◽  
Enrique Bravo ◽  
Sonia Diez-Muñiz ◽  
Cesar Nombela ◽  
Jose M. Rodríguez-Peña ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161371 ◽  
Author(s):  
Yutaka Tanaka ◽  
Masato Sasaki ◽  
Fumie Ito ◽  
Toshio Aoyama ◽  
Michiyo Sato-Okamoto ◽  
...  

2009 ◽  
Vol 284 (16) ◽  
pp. 10901-10911 ◽  
Author(s):  
Raúl García ◽  
Jose M. Rodríguez-Peña ◽  
Clara Bermejo ◽  
César Nombela ◽  
Javier Arroyo

Sign in / Sign up

Export Citation Format

Share Document