scholarly journals Yeast Mpk1 Cell Wall Integrity Mitogen-activated Protein Kinase Regulates Nucleocytoplasmic Shuttling of the Swi6 Transcriptional Regulator

2010 ◽  
Vol 21 (9) ◽  
pp. 1609-1619 ◽  
Author(s):  
Ki-Young Kim ◽  
Andrew W. Truman ◽  
Stefanie Caesar ◽  
Gabriel Schlenstedt ◽  
David E. Levin

The yeast SBF transcription factor is a heterodimer comprised of Swi4 and Swi6 that has a well defined role in cell cycle-specific transcription. SBF serves a second function in the transcriptional response to cell wall stress in which activated Mpk1 mitogen-activated protein kinase of the cell wall integrity signaling pathway forms a complex with Swi4, the DNA binding subunit of SBF, conferring upon Swi4 the ability to bind DNA and activate transcription of FKS2. Although Mpk1–Swi4 complex formation and transcriptional activation of FKS2 does not require Mpk1 catalytic activity, Swi6 is phosphorylated by Mpk1 and must be present in the Mpk1-Swi4 complex for transcriptional activation of FKS2. Here, we find that Mpk1 regulates Swi6 nucleocytoplasmic shuttling in a biphasic manner. First, formation of the Mpk1-Swi4 complex recruits Swi6 to the nucleus for transcriptional activation. Second, Mpk1 negatively regulates Swi6 by phosphorylation on Ser238, which inhibits nuclear entry. Ser238 neighbors a nuclear localization signal (NLS) whose function is blocked by phosphorylation at Ser238 in a manner similar to the regulation by Cdc28 of another Swi6 NLS, revealing a mechanism for the integration of multiple signals to a single endpoint. Finally, the Kap120 β-importin binds the Mpk1-regulated Swi6 NLS but not the Cdc28-regulated NLS.

2008 ◽  
Vol 28 (8) ◽  
pp. 2579-2589 ◽  
Author(s):  
Ki-Young Kim ◽  
Andrew W. Truman ◽  
David E. Levin

ABSTRACT The cell wall integrity mitogen-activated protein kinase (MAPK) cascade of Saccharomyces cerevisiae drives changes in gene expression in response to cell wall stress. We show that the MAPK of this pathway (Mpk1) and its pseudokinase paralog (Mlp1) use a noncatalytic mechanism to activate transcription of the FKS2 gene. Transcriptional activation of FKS2 was dependent on the Swi4/Swi6 (SBF) transcription factor and on an activating signal to Mpk1 but not on protein kinase activity. Activated (phosphorylated) Mpk1 and Mlp1 were detected in a complex with Swi4 and Swi6 at the FKS2 promoter. Mpk1 association with Swi4 in vivo required phosphorylation of Mpk1. Promoter association of Mpk1 and the Swi4 DNA-binding subunit of SBF were codependent but did not require Swi6, indicating that the MAPK confers DNA-binding ability to Swi4. Based on these data, we propose a model in which phosphorylated Mpk1 or Mlp1 forms a dimeric complex with Swi4 that is competent to associate with the FKS2 promoter. This complex then recruits Swi6 to activate transcription. Finally, we show that human ERK5, a functional ortholog of Mpk1, is similarly capable of driving FKS2 expression in the absence of protein kinase activity, suggesting that this mammalian MAPK may also have a noncatalytic function in vivo.


2012 ◽  
Vol 23 (14) ◽  
pp. 2805-2817 ◽  
Author(s):  
A. Belén Sanz ◽  
Raúl García ◽  
Jose Manuel Rodríguez-Peña ◽  
Sonia Díez-Muñiz ◽  
César Nombela ◽  
...  

In Saccharomyces cerevisiae, the transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, the mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, and is mostly mediated by the transcription factor Rlm1. Here we show that the SWI/SNF chromatin-remodeling complex plays a critical role in orchestrating the transcriptional response regulated by Rlm1. swi/snf mutants show drastically reduced expression of cell wall stress–responsive genes and hypersensitivity to cell wall–interfering compounds. On stress, binding of RNA Pol II to the promoters of these genes depends on Rlm1, Slt2, and SWI/SNF. Rlm1 physically interacts with SWI/SNF to direct its association to target promoters. Finally, we observe nucleosome displacement at the CWI-responsive gene MLP1/KDX1, which relies on the SWI/SNF complex. Taken together, our results identify the SWI/SNF complex as a key element of the CWI MAPK pathway that mediates the chromatin remodeling necessary for adequate transcriptional response to cell wall stress.


2009 ◽  
Vol 29 (24) ◽  
pp. 6449-6461 ◽  
Author(s):  
Andrew W. Truman ◽  
Ki-Young Kim ◽  
David E. Levin

ABSTRACT The Mpk1 mitogen-activated protein kinase (MAPK) of the cell wall integrity signaling pathway uses a noncatalytic mechanism to activate the SBF (Swi4/Swi6) transcription factor. Active Mpk1 forms a complex with Swi4, the DNA-binding subunit of SBF, conferring the ability to bind DNA. Because SBF activation is independent of Mpk1 catalytic activity but requires Mpk1 to be in an active conformation, we sought to understand how Mpk1 interacts with Swi4. Mutational analysis revealed that binding and activation of Swi4 by Mpk1 requires an intact D-motif-binding site, a docking surface common to MAPKs that resides distal to the phosphorylation loop but does not require the substrate-binding site, revealing a novel mechanism for MAPK target regulation. Additionally, we found that Mpk1 binds near the autoinhibitory C terminus of Swi4, suggesting an activation mechanism in which Mpk1 substitutes for Swi6 in promoting Swi4 DNA binding. Finally, we show that caffeine is an atypical activator of cell wall integrity signaling, because it induces phosphorylation of the Mpk1 C-terminal extension at Ser423 and Ser428. These phosphorylations were dependent on the DNA damage checkpoint kinases, Mec1/Tel1 and Rad53. Phosphorylation of Ser423 specifically blocked SBF activation by preventing Mpk1 association with Swi4, revealing a novel mechanism for regulating MAPK target specificity.


2002 ◽  
Vol 1 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Andrew K. Sobering ◽  
Un Sung Jung ◽  
Kyung S. Lee ◽  
David E. Levin

ABSTRACT The RPI1 gene of Saccharomyces cerevisiae was identified initially as a dosage suppressor of the heat shock sensitivity associated with overexpression of RAS2 (J. Kim and S. Powers, Mol. Cell. Biol. 11:3894–3904, 1991). Based on its failure to suppress mutationally activated RAS2, RPI1 was proposed to be a negative regulator of the Ras/cyclic AMP (cAMP) pathway that functions at a point upstream of Ras. We isolated RPI1 as a high-copy-number suppressor of the cell lysis defect associated with a null mutation in the MPK1 gene, which encodes the mitogen-activated protein kinase of the cell wall integrity-signaling pathway. Although the sequence of Rpi1 is not informative about its function, we present evidence that this protein resides in the nucleus, possesses a transcriptional activation domain, and affects the mRNA levels of several cell wall metabolism genes. In contrast to the previous report, we found that RPI1 overexpression suppresses defects associated with mutational hyperactivation of the Ras/cAMP pathway at all points including constitutive mutations in the cAMP-dependent protein kinase. We present additional genetic and biochemical evidence that Rpi1 functions independently of and in opposition to the Ras/cAMP pathway to promote preparations for the stationary phase. Among these preparations is a fortification of the cell wall that is antagonized by Ras pathway activity. This observation reveals a novel link between the Ras/cAMP pathway and cell wall integrity. Finally, we propose that inappropriate expression of RPI1 during log phase growth drives fortification of the cell wall and that this behavior is responsible for suppression of the mpk1 cell lysis defect.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Lilian Pereira Silva ◽  
Dean Frawley ◽  
Leandro José de Assis ◽  
Ciara Tierney ◽  
Alastair B. Fleming ◽  
...  

ABSTRACT The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen. IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


2002 ◽  
Vol 13 (9) ◽  
pp. 3005-3028 ◽  
Author(s):  
Françoise M. Roelants ◽  
Pamela D. Torrance ◽  
Natalie Bezman ◽  
Jeremy Thorner

Saccharomyces cerevisiae Pkh1 and Pkh2 are functionally redundant homologs of mammalian protein kinase, phosphoinositide-dependent protein kinase-1. They activate two closely related, functionally redundant enzymes, Ypk1 and Ykr2 (homologs of mammalian protein kinase, serum- and glucocorticoid-inducible protein kinase). We found that Ypk1 has a more prominent role than Ykr2 in mediating their shared essential function. Considerable evidence demonstrated that Pkh1 preferentially activates Ypk1, whereas Pkh2 preferentially activates Ykr2. Loss of Pkh1 (but not Pkh2) reduced Ypk1 activity; conversely, Pkh1 overexpression increased Ypk1 activity more than Pkh2 overexpression. Loss of Pkh2 reduced Ykr2 activity; correspondingly, Pkh2 overexpression increased Ykr2 activity more than Pkh1 overexpression. When overexpressed, a catalytically active C-terminal fragment (kinase domain) of Ypk1 was growth inhibitory; loss of Pkh1 (but not Pkh2) alleviated toxicity. Loss of Pkh2 (but not Pkh1) exacerbated the slow growth phenotype of aypk1Δ strain. This Pkh1-Ypk1 and Pkh2-Ykr2 dichotomy is not absolute because all double mutants (pkh1Δ ypk1Δ, pkh2Δ ypk1Δ, pkh1Δ ykr2Δ, and pkh2Δ ykr2Δ) were viable. Compartmentation contributes to selectivity because Pkh1 and Ypk1 were located exclusively in the cytosol, whereas Pkh2 and Ykr2 entered the nucleus. At restrictive temperature,ypk1-1tsykr2Δ cells lysed rapidly, but not in medium containing osmotic support. Dosage and extragenic suppressors were selected. Overexpression of Exg1 (major exoglucanase), or loss of Kex2 (endoprotease involved in Exg1 processing), rescued growth at high temperature. Viability was also maintained by PKC1 overexpression or an activated allele of the downstream protein kinase (BCK1-20). Conversely, absence of Mpk1 (distal mitogen-activated protein kinase of thePKC1 pathway) was lethal inypk1-1tsykr2Δ cells. Thus, Pkh1-Ypk1 and Pkh2-Ykr2 function in a novel pathway for cell wall integrity that acts in parallel with the Pkc1-dependent pathway.


2010 ◽  
Vol 10 (3) ◽  
pp. 343-352 ◽  
Author(s):  
Taiga Miyazaki ◽  
Tatsuo Inamine ◽  
Shunsuke Yamauchi ◽  
Yosuke Nagayoshi ◽  
Tomomi Saijo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document