scholarly journals Twitchin kinase interacts with MAPKAP kinase 2 in Caenorhabditis elegans striated muscle

2015 ◽  
Vol 26 (11) ◽  
pp. 2096-2111 ◽  
Author(s):  
Yohei Matsunaga ◽  
Hiroshi Qadota ◽  
Miho Furukawa ◽  
Heejoo (Helen) Choe ◽  
Guy M. Benian

In Caenorhabditis elegans, twitchin is a giant polypeptide located in muscle A-bands. The protein kinase of twitchin is autoinhibited by 45 residues upstream (NL) and 60 residues downstream (CRD) of the kinase catalytic core. Molecular dynamics simulation on a twitchin fragment revealed that the NL is released by pulling force. However, it is unclear how the CRD is removed. To identify proteins that may remove the CRD, we performed a yeast two-hybrid screen using twitchin kinase as bait. One interactor is MAK-1, C. elegans orthologue of MAPKAP kinase 2. MAPKAP kinase 2 is phosphorylated and activated by p38 MAP kinase. We demonstrate that the CRD of twitchin is important for binding to MAK-1. mak-1 is expressed in nematode body wall muscle, and antibodies to MAK-1 localize between and around Z-disk analogues and to the edge of A-bands. Whereas unc-22 mutants are completely resistant, mak-1 mutants are partially resistant to nicotine. MAK-1 can phosphorylate twitchin NL-Kin-CRD in vitro. Genetic data suggest the involvement of two other mak-1 paralogues and two orthologues of p38 MAP kinase. These results suggest that MAK-1 is an activator of twitchin kinase and that the p38 MAP kinase pathway may be involved in the regulation of twitchin.

PLoS Genetics ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. e1006010 ◽  
Author(s):  
Serena A. D’Souza ◽  
Luckshi Rajendran ◽  
Rachel Bagg ◽  
Louis Barbier ◽  
Derek M. van Pel ◽  
...  

The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 929-934 ◽  
Author(s):  
Yuka Nagata ◽  
Tetsuo Moriguchi ◽  
Eisuke Nishida ◽  
Kazuo Todokoro

Activation of p38 MAP kinase (p38) as well as JNK/SAPK has been described as being induced by a variety of environmental stresses such as osmotic shock, ultraviolet radiation, and heat shock, or the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 (IL-3). We found that the hematopoietic cytokines erythropoietin (Epo) and IL-3, which regulate growth and differentiation of erythroids and hematopoietic progenitors, respectively, also activate a p38 cascade. Immunoblot analyses and in vitro kinase assay clearly showed that Epo and IL-3 rapidly and transiently phosphorylated and activated p38 in Epo– or IL-3–dependent mouse hematopoietic progenitor cells. p38 can generally be activated by the upstream kinase MKK3 or MKK6. However, in vitro kinase assays in the immunoprecipitates with anti-MKK6 antibody and anti-phosphorylated MKK3/MKK6 antibody showed that activation of neither MKK3 nor MKK6 was detected after Epo or IL-3 stimulation, while osmotic shock clearly induced activation of both MKK3/MKK6 and p38. Together with previous observations, these results suggest that both p38 and JNK cascades play an important role not only in stress and proinflammatory cytokine responses but also in hematopoietic cytokine actions.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 929-934 ◽  
Author(s):  
Yuka Nagata ◽  
Tetsuo Moriguchi ◽  
Eisuke Nishida ◽  
Kazuo Todokoro

Abstract Activation of p38 MAP kinase (p38) as well as JNK/SAPK has been described as being induced by a variety of environmental stresses such as osmotic shock, ultraviolet radiation, and heat shock, or the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 (IL-3). We found that the hematopoietic cytokines erythropoietin (Epo) and IL-3, which regulate growth and differentiation of erythroids and hematopoietic progenitors, respectively, also activate a p38 cascade. Immunoblot analyses and in vitro kinase assay clearly showed that Epo and IL-3 rapidly and transiently phosphorylated and activated p38 in Epo– or IL-3–dependent mouse hematopoietic progenitor cells. p38 can generally be activated by the upstream kinase MKK3 or MKK6. However, in vitro kinase assays in the immunoprecipitates with anti-MKK6 antibody and anti-phosphorylated MKK3/MKK6 antibody showed that activation of neither MKK3 nor MKK6 was detected after Epo or IL-3 stimulation, while osmotic shock clearly induced activation of both MKK3/MKK6 and p38. Together with previous observations, these results suggest that both p38 and JNK cascades play an important role not only in stress and proinflammatory cytokine responses but also in hematopoietic cytokine actions.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


Sign in / Sign up

Export Citation Format

Share Document