scholarly journals A conserved activity for cohesin in bridging DNA molecules

2019 ◽  
Author(s):  
Pilar Gutierrez-Escribano ◽  
Matthew D. Newton ◽  
Aida Llauró ◽  
Jonas Huber ◽  
Loredana Tanasie ◽  
...  

AbstractEssential processes such as accurate chromosome segregation, regulation of gene expression and DNA repair rely on protein-mediated DNA tethering. Sister chromatid cohesion requires the SMC complex cohesin to act as a protein linker that holds replicated chromatids together (1, 2). The molecular mechanism by which cohesins hold sister chromatids has remained controversial. Here, we used a single molecule approach to visualise the activity of cohesin complexes as they hold DNA molecules. We describe a DNA bridging activity that requires ATP and is conserved from yeast to human cohesin. We show that cohesin can form two distinct classes of bridges at physiological conditions, a “permanent bridge” able to resists high force (over 80pN) and a “reversible bridge” that breaks at lower forces (5-40pN). Both classes of bridges require Scc2/Scc4 in addition to ATP. We demonstrate that bridge formation requires physical proximity of the DNA segments to be tethered and show that “permanent” cohesin bridges can move between two DNA molecules but cannot be removed from DNA when they occur in cis. This suggests that separate physical compartments in cohesin molecules are involved in the bridge. Finally, we show that cohesin tetramers, unlike condensin, cannot compact linear DNA molecules against low force, demonstrating that the core activity of cohesin tetramers is bridging DNA rather than compacting it. Our findings carry important implications for the understanding of the basic mechanisms behind cohesin-dependent establishment of sister chromatid cohesion and chromosome architecture.

2015 ◽  
Vol 26 (23) ◽  
pp. 4224-4235 ◽  
Author(s):  
Thomas Eng ◽  
Vincent Guacci ◽  
Douglas Koshland

The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation.


2010 ◽  
Vol 188 (3) ◽  
pp. 335-349 ◽  
Author(s):  
Rihui Yan ◽  
Sharon E. Thomas ◽  
Jui-He Tsai ◽  
Yukihiro Yamada ◽  
Bruce D. McKee

Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.


2017 ◽  
Author(s):  
James D.P. Rhodes ◽  
Davide Mazza ◽  
Kim A. Nasmyth ◽  
Stephan Uphoff

AbstractThe cohesin complex mediates DNA-DNA interactions both between (sister chromatid cohesion) and within chromosomes (DNA looping) via a process thought to involve entrapment of DNAs within its tripartite ring. It has been suggested that intra- chromosome loops are generated through processive extrusion of DNAs through the lumen of cohesin’s ring. Scc2 (Nipbl) is essential for loading cohesin onto chromosomes but not for maintaining sister chromatid cohesion following DNA replication. It has therefore been assumed that Scc2 is involved exclusively in the cohesin loading process. However, it is possible that the stimulation of cohesin’s ABC-like ATPase by Scc2 also has a post-loading function, for example driving loop extrusion. Using fluorescence recovery after photobleaching (FRAP) and single-molecule tracking, we show that Scc2 binds dynamically to chromatin, principally through an association with cohesin. Scc2’s movement within chromatin is consistent with a “stop-and-go” or “hopping” motion. We suggest that a low diffusion coefficient, a low stoichiometry relative to cohesin, and a high affinity for chromosomal cohesin enables Scc2 to move rapidly from one chromosomal cohesin complex to another, performing a function distinct from loading.


2019 ◽  
Vol 53 (1) ◽  
pp. 445-482 ◽  
Author(s):  
Stanislau Yatskevich ◽  
James Rhodes ◽  
Kim Nasmyth

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.


2015 ◽  
Vol 2 (2) ◽  
pp. 150029 ◽  
Author(s):  
Mary Brady ◽  
Leocadia V. Paliulis

The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the ‘standard’ meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes.


2018 ◽  
Vol 29 (15) ◽  
pp. 1811-1824 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
John R. Daum ◽  
Gary J. Gorbsky

Cells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in mitosis. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways that breach sister chromatid cohesion during cohesion fatigue remain unknown. Using moderate-salt buffers to remove loosely bound chromatin cohesin, we show that “cohesive” cohesin is not released during chromatid separation during cohesion fatigue. Using a regulated protein heterodimerization system to lock different cohesin ring interfaces at specific times in mitosis, we show that the Wapl-mediated pathway of cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Finally, while massive separation of chromatids in cohesion fatigue likely produces inviable cell progeny, we find that short metaphase delays, leading to partial chromatid separation, predispose cells to chromosome missegregation. Thus, complete separation of one or a few chromosomes and/or partial separation of sister chromatids may be an unrecognized but common source of chromosome instability that perpetuates the evolution of malignant cells in cancer.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 466
Author(s):  
Sarah S. Henrikus ◽  
Alessandro Costa

Cohesion between replicated chromosomes is essential for chromatin dynamics and equal segregation of duplicated genetic material. In the G1 phase, the ring-shaped cohesin complex is loaded onto duplex DNA, enriching at replication start sites, or “origins”. During the same phase of the cell cycle, and also at the origin sites, two MCM helicases are loaded as symmetric double hexamers around duplex DNA. During the S phase, and through the action of replication factors, cohesin switches from encircling one parental duplex DNA to topologically enclosing the two duplicated DNA filaments, which are known as sister chromatids. Despite its vital importance, the structural mechanism leading to sister chromatid cohesion establishment at the replication fork is mostly elusive. Here we review the current understanding of the molecular interactions between the replication machinery and cohesin, which support sister chromatid cohesion establishment and cohesin function. In particular, we discuss how cryo-EM is shedding light on the mechanisms of DNA replication and cohesin loading processes. We further expound how frontier cryo-EM approaches, combined with biochemistry and single-molecule fluorescence assays, can lead to understanding the molecular basis of sister chromatid cohesion establishment at the replication fork.


2018 ◽  
Author(s):  
Tisha Bohr ◽  
Christian R. Nelson ◽  
Stefani Giacopazzi ◽  
Piero Lamelza ◽  
Needhi Bhalla

AbstractThe conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of the meiotic chromosomal protein, HTP-3. Null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss of function allele of HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei, when HTP-3 is present but not yet loaded onto chromosome axes, suggesting an early role in regulating meiotic chromosome metabolism. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has been focused on its regulation of sister chromatid cohesion in meiosis, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin’s functions beyond coordinating regulatory activities at the centromere.


2019 ◽  
Vol 117 (2) ◽  
pp. 1081-1089 ◽  
Author(s):  
Dawn Bender ◽  
Eulália Maria Lima Da Silva ◽  
Jingrong Chen ◽  
Annelise Poss ◽  
Lauren Gawey ◽  
...  

The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.


2004 ◽  
Vol 359 (1441) ◽  
pp. 99-108 ◽  
Author(s):  
Kim Nasmyth ◽  
Alexander Schleiffer

The propagation of our genomes during cell proliferation depends on the movement of sister DNA molecules produced by DNA replication to opposite sides of the cell before it divides. This feat is achieved by microtubules in eukaryotic cells but it has long remained a mystery how cells ensure that sister DNAs attach to microtubules with opposite orientations, known as amphitelic attachment. It is currently thought that sister chromatid cohesion has a crucial role. By resisting the forces exerted by microtubules, sister chromatid cohesion gives rise to tension that is thought essential for stabilizing kinetochore–microtubule attachments. Efficient amphitelic attachment is therefore achieved by an error correction mechanism that selectively eliminates connections that do not give rise to tension. Cohesion between sister chromatids is mediated by a multisubunit complex called cohesin which forms a gigantic ring structure. It has been proposed that sister DNAs are held together owing to their becoming entrapped within a single cohesin ring. Cohesion between sister chromatids is destroyed at the metaphase to anaphase transition by proteolytic cleavage of cohesin's Scc1 subunit by a thiol protease called separase, which severs the ring and thereby releases sister DNAs.


Sign in / Sign up

Export Citation Format

Share Document