scholarly journals Resveratrol protects PC12 cells against OGD/R-induced apoptosis via the mitochondrial-mediated signaling pathway

2016 ◽  
Vol 48 (4) ◽  
pp. 342-353 ◽  
Author(s):  
Xuan Liu ◽  
Xiangyang Zhu ◽  
Miao Chen ◽  
Qinmin Ge ◽  
Yong Shen ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhi-Xiu Lin ◽  
Qing-Qiu Mao ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  

The neurotoxicity of amyloid-β(Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated fromUncaria rhynchophylla,exerts neuroprotective effect againstAβ25–35-induced neurotoxicityin vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN againstAβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation inAβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β(p-GSK-3β). Lithium chloride blockedAβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3βinhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversedAβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN againstAβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3βsignaling pathway.


2012 ◽  
Vol 39 (6) ◽  
pp. 6495-6503 ◽  
Author(s):  
Huimin Dong ◽  
Shanpin Mao ◽  
Jiajun Wei ◽  
Baohui Liu ◽  
Zhaohui Zhang ◽  
...  

2021 ◽  
Vol 18 (10) ◽  
pp. 2037-2043
Author(s):  
Hong Zhu ◽  
Dan Ren ◽  
Lan Xiao ◽  
Ting Zhang ◽  
Ruomeng Li ◽  
...  

Purpose: To investigate whether the cytoprotective effect of anthocyanin (Anc) on oxygen-glucose deprivation/reperfusion (OGD/R)-induced cell injury is related to apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Methods: PC12 cells were pre-treated with various concentrations of Anc (10, 50, and 100 μg/mL) in OGD/R-induced cell injury model. The 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay was used to assess cell viability. Cell apoptosis was measured by lactic acid dehydrogenase (LDH) release assay and flow cytometry. Western blot was employed to determine the protein expressions of BCL-2, BAX, caspase-3, p-ASK1 (Thr845), p-JNK, and p-p38. Results: The results indicate that Anc increased the viability of PC12 cells after OGD/R exposure (p < 0.05), and also efficiently rescued OGD/R-induced apoptosis (p < 0.05). Mechanistic studies showed that these protective roles of Anc are related to the inhibition of ASK1/JNK/p38 signaling pathway. Conclusion: The results indicate Anc protects against OGD/R-induced cell injury by enhancing cell viability and inhibiting cell apoptosis. The underlying mechanism of action is partly via inactivation of ASK1/JNK/p38 signaling pathway. Thus, Anc has promise as a potential natural agent to prevent and treat cerebral ischemia-reperfusion injury.


2012 ◽  
Vol 39 (6) ◽  
pp. 7213-7213 ◽  
Author(s):  
Huimin Dong ◽  
Shanping Mao ◽  
Jiajun Wei ◽  
Baohui Liu ◽  
Zhaohui Zhang ◽  
...  

2016 ◽  
Vol 37 (6) ◽  
pp. 731-740 ◽  
Author(s):  
Ju-yang Huang ◽  
Yu-he Yuan ◽  
Jia-qing Yan ◽  
Ya-nan Wang ◽  
Shi-feng Chu ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 1014-1023 ◽  
Author(s):  
Zheng Fu ◽  
Jiufang Yang ◽  
Yangji Wei ◽  
Jingming Li

Piceatannol and pterostilbene both showed protective effect against Aβ-induced apoptosis in PC12 cells, however, with different PI3K/Akt signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document