Climate Change and Carbon Cycle Feedbacks

Author(s):  
Pierre Friedlingstein

Climate and carbon cycle are tightly coupled on many time scales, from the interannual to the multimillennial. Observation always shows a positive feedback between climate and the carbon cycle: elevated atmospheric CO2 leads to warming, but warming is expected to further release of carbon to the atmosphere, enhancing the atmospheric CO2 increase. Earth system models do represent these climate–carbon cycle feedbacks, always simulating a positive feedback over the 21st century; that is, climate change will lead to loss of carbon from the land and ocean reservoirs. These processes partially offset the increases in land and ocean carbon sinks caused by rising atmospheric CO2. As a result, more of the emitted anthropogenic CO2 will remain in the atmosphere. There is, however, a large uncertainty on the magnitude of this feedback. Recent studies now help to reduce this uncertainty. On short, interannual, time scales, El Niño years record larger-than-average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate–carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. On a longer, centennial, time scale, the variability of atmospheric CO2 found in records of the last millennium can be used to constrain the overall global carbon cycle response to climate. These independent methods confirm that the climate–carbon cycle feedback is positive, but probably more consistent with the lower end of the comprehensive models range, excluding very large climate–carbon cycle feedbacks.

Author(s):  
Pierre Friedlingstein

Climate and carbon cycle are tightly coupled on many timescales, from interannual to multi-millennial timescales. Observations always evidence a positive feedback, warming leading to release of carbon to the atmosphere; however, the processes at play differ depending on the timescales. State-of-the-art Earth System Models now represent these climate-carbon cycle feedbacks, always simulating a positive feedback over the twentieth and twenty-first centuries, although with substantial uncertainty. Recent studies now help to reduce this uncertainty. First, on short timescales, El Niño years record larger than average atmospheric CO 2 growth rate, with tropical land ecosystems being the main drivers. These climate-carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. Second, centennial variability found in last millennium records can be used to constrain the overall global carbon cycle response to climatic excursions. These independent methods point to climate-carbon cycle feedback at the low-end of the Earth System Models range, indicating that these models overestimate the carbon cycle sensitivity to climate change. These new findings also help to attribute the historical land and ocean carbon sinks to increase in atmospheric CO 2 and climate change.


2021 ◽  
Author(s):  
Guilherme Torres Mendonça ◽  
Julia Pongratz ◽  
Christian Reick

<p>The increase in atmospheric CO2 driven by anthropogenic emissions is the main radiative forcing causing climate change. But this increase is not only a result from emissions, but also from changes in the global carbon cycle. These changes arise from feedbacks between climate and the carbon cycle that drive CO2 into or out of the atmosphere in addition to the emissions, thereby either accelerating or buffering climate change. Therefore, understanding the contribution of these feedbacks to the global response of the carbon cycle is crucial in advancing climate research. Currently, this contribution is quantified by the α-β-γ framework (Friedlingstein et al., 2003). But this quantification is only valid for a particular perturbation scenario and time period. In contrast, a recently proposed generalization (Rubino et al., 2016) of this framework for weak perturbations quantifies this contribution for all scenarios and at different time scales. </p><p>Thereby, this generalization provides a systematic framework to investigate the response of the global carbon cycle in terms of the climate-carbon cycle feedbacks. In the present work we employ this framework to study these feedbacks and the airborne fraction in different CMIP5 models. We demonstrate (1) that this generalization of the α-β-γ framework consistently describes the linear dynamics of the carbon cycle in the MPI-ESM; and (2) how by this framework the climate-carbon cycle feedbacks and airborne fraction are quantified at different time scales in CMIP5 models. Our analysis shows that, independently of the perturbation scenario, (1) the net climate-carbon cycle feedback is negative at all time scales; (2) the airborne fraction generally decreases for increasing time scales; and (3) the land biogeochemical feedback dominates the model spread in the airborne fraction at all time scales. This last result therefore emphasizes the need to improve our understanding of this particular feedback.</p><p><strong>References:</strong></p><p>P. Friedlingstein, J.-L. Dufresne, P. Cox, and P. Rayner. How positive is the feedback between climate change and the carbon cycle? Tellus B, 55(2):692–700, 2003.</p><p>M. Rubino, D. Etheridge, C. Trudinger, C. Allison, P. Rayner, I. Enting, R. Mulvaney, L. Steele, R. Langenfelds, W. Sturges, et al. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geoscience, 9(9):691–694, 2016.</p>


2006 ◽  
Vol 19 (14) ◽  
pp. 3337-3353 ◽  
Author(s):  
P. Friedlingstein ◽  
P. Cox ◽  
R. Betts ◽  
L. Bopp ◽  
W. von Bloh ◽  
...  

Abstract Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


2002 ◽  
Vol 29 (10) ◽  
pp. 43-1-43-4 ◽  
Author(s):  
J.-L. Dufresne ◽  
L. Fairhead ◽  
H. Le Treut ◽  
M. Berthelot ◽  
L. Bopp ◽  
...  

2021 ◽  
Author(s):  
Tatiana Ilyina ◽  
Hongmei Li ◽  
Wolfgang Müller ◽  
Aaron Spring

<p>Initialized predictions of near-term future climate have proven successful and predictive power for the global carbon cycle is also emerging. Through extending ESM-based decadal prediction systems, i.e. those contributing to Decadal Climate Prediction Project (DCPP) with the ocean and land carbon cycle components, it becomes possible to establish predictability of the carbon sinks and variations of atmospheric CO<sub>2</sub> concentrations. However, such predictions of the global carbon cycle still remain a cutting-edge activity of only a few modeling groups.</p><p>On interannual to decadal time-scales, atmospheric CO<sub>2</sub> growth rates exhibit pronounced anomalies driven by varying strengths of the land and ocean carbon sinks; these anomalies are linked to climate variability on decadal and interannual time scales. Is it possible to predict if atmospheric CO<sub>2</sub> changes slower of faster as expected from changes in emissions? This question is examined in a multi-model framework comprising prediction systems initialized by the observed state of the physical climate. The multi-model framework comprises ESM-based prediction systems that contributed to DCPP within CMIP6, as well as those which run with the CMIP5 forcing.</p><p>A predictive skill for the global ocean carbon sink of up to 6 years is found for some models. Longer regional predictability horizons are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra-tropics enabled by the initialization of the physical climate. Furthermore, anomalies of atmospheric CO<sub>2</sub> growth rate inferred from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon. These predictions of the global carbon cycle and the planet’s breath maintained by variations of atmospheric CO<sub>2</sub> are essential to understand where the anthropogenic carbon would go in response to emission reduction efforts addressing global warming mitigation. Such information is useful to verify the effectiveness of fossil fuel emissions reduction measures.</p>


2001 ◽  
Vol 28 (8) ◽  
pp. 1543-1546 ◽  
Author(s):  
Pierre Friedlingstein ◽  
Laurent Bopp ◽  
Philippe Ciais ◽  
Jean-Louis Dufresne ◽  
Laurent Fairhead ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 507-523 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.


2021 ◽  
Author(s):  
Zhe Jin ◽  
Xiangjun Tian ◽  
Rui Han ◽  
Yu Fu ◽  
Xin Li ◽  
...  

Abstract. Accurate assessment of the various sources and sinks of carbon dioxide (CO2), especially terrestrial ecosystem and ocean fluxes with high uncertainties, is important for understanding of the global carbon cycle, supporting the formulation of climate policies, and projecting future climate change. Satellite retrievals of the column-averaged dry air mole fractions of CO2 (XCO2) are being widely used to improve carbon flux estimation due to their broad spatial coverage. However, there is no consensus on the robust estimates of regional fluxes. In this study, we present a global and regional resolved terrestrial ecosystem carbon flux (NEE) and ocean carbon flux dataset for 2015–2019. The dataset was generated using the Tan-Tracker inversion system by assimilating Observing Carbon Observatory 2 (OCO-2) column CO2 retrievals. The posterior NEE and ocean carbon fluxes were comprehensively validated by comparing posterior simulated CO2 concentrations with OCO-2 independent retrievals and Total Carbon Column Observing Network (TCCON) measurements. The validation showed that posterior carbon fluxes significantly improved the modelling of atmospheric CO2 concentrations, with global mean biases of 0.33 ppm against OCO-2 retrievals and 0.12 ppm against TCCON measurements. We described the characteristics of the dataset at global, regional, and Tibetan Plateau scales in terms of the carbon budget, annual and seasonal variations, and spatial distribution. The posterior 5-year annual mean global atmospheric CO2 growth rate was 5.35 PgC yr−1, which was within the uncertainty of the Global Carbon Budget 2020 estimate (5.49 PgC yr−1). The posterior annual mean NEE and ocean carbon fluxes were −4.07 and −3.33 PgC yr−1, respectively. Regional fluxes were analysed based on TransCom partitioning. All 11 land regions acted as carbon sinks, except for Tropical South America, which was almost neutral. The strongest carbon sinks were located in Boreal Asia, followed by Temperate Asia and North Africa. The entire Tibetan Plateau ecosystem was estimated as a carbon sink, taking up −49.52 TgC yr−1 on average, with the strongest sink occurring in eastern alpine meadows. These results indicate that our dataset captures surface carbon fluxes well and provides insight into the global carbon cycle. The dataset can be accessed at https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021).


2020 ◽  
Author(s):  
David I. Armstrong McKay ◽  
Sarah E. Cornell ◽  
Katherine Richardson ◽  
Johan Rockström

Abstract. The Earth’s oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models predict, though, that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here we use a recently-developed extension of the cGEnIE Earth system model (ecoGEnIE) featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on the soft-tissue biological pump in response to climate change. We find that including TDR strengthens the biological pump relative to default runs due to increased nutrient recycling, while ECOGEM weakens the biological pump by enabling a shift to smaller plankton classes. However, interactions with concurrent ocean acidification cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs whereas ECOGEM leads to a larger sink. Combining TDR and ECOGEM results in a net strengthening of the biological pump and a small net reduction in carbon sink relative to default. These results clearly illustrate the substantial degree to which ecological dynamics and biodiversity modulate the strength of climate-biosphere feedbacks, and demonstrate that Earth system models need to incorporate more ecological complexity in order to resolve carbon sink weakening.


2011 ◽  
Vol 2 (1) ◽  
pp. 133-159
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay, the more difficult it would be to counteract climate change.


Sign in / Sign up

Export Citation Format

Share Document