scholarly journals Frequency of Somatic TP53 Mutations in Combination With Known Pathogenic Mutations as Identified by Next-Generation Sequencing

2017 ◽  
Vol 147 (suppl_2) ◽  
pp. S27-S27
Author(s):  
Zahra Shajani-Yi ◽  
Francine De Abreu ◽  
Jason Peterson ◽  
Gregory Tsongalis
2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Ling-hui Qu ◽  
Xin Jin ◽  
Yan-ling Long ◽  
Jia-yun Ren ◽  
Chuang-huang Weng ◽  
...  

Abstract Background: The USH2A gene encodes usherin, a basement membrane protein that is involved in the development and homeostasis of the inner ear and retina. Mutations in USH2A are linked to Usher syndrome type II (USH II) and non-syndromic retinitis pigmentosa (RP). Molecular diagnosis can provide insight into the pathogenesis of these diseases, facilitate clinical diagnosis, and identify individuals who can most benefit from gene or cell replacement therapy. Here, we report 21 pathogenic mutations in the USH2A gene identified in 11 Chinese families by using the targeted next-generation sequencing (NGS) technology. Methods: In all, 11 unrelated Chinese families were enrolled, and NGS was performed to identify mutations in the USH2A gene. Variant analysis, Sanger validation, and segregation tests were utilized to validate the disease-causing mutations in these families. Results: We identified 21 pathogenic mutations, of which 13, including 5 associated with non-syndromic RP and 8 with USH II, have not been previously reported. The novel variants segregated with disease phenotype in the affected families and were absent from the control subjects. In general, visual impairment and retinopathy were consistent between the USH II and non-syndromic RP patients with USH2A mutations. Conclusions: These findings provide a basis for investigating genotype–phenotype relationships in Chinese USH II and RP patients and for clarifying the pathophysiology and molecular mechanisms of the diseases associated with USH2A mutations.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3266-3266
Author(s):  
Cécile Bally ◽  
Aline Renneville ◽  
Lionel Adès ◽  
Claude Preudhomme ◽  
Hugues de Thé ◽  
...  

Abstract Background TP53 mutations inactivating p53 protein, often associated with loss of the remaining TP53 allele through 17p deletion, are major prognostic factors in many hematological malignancies, including CLL, myeloma, AML and MDS. In AML and MDS, they are usually associated with complex karyotype (including del 17p) and very poor prognosis (Blood 1991, 78(7):1652-7 , Bejar, NEJM 2011), including after allogeneic SCT (Middeke JM, Blood 2014) but they are also seen in lower risk MDS with isolated del 5q, where they confer resistance to Lenalidomide (Jadersten, JCO 2011). The advent of Next Generation Sequencing (NGS) techniques has improved the detection of such mutations, by allowing the identification of small mutated clones. Other detection methods may prove interesting, especially functional methods like FASAY ( Functional Assay of Separated Allele in Yeast) , an easy and sensitive method that detects TP53 mutations by assessing the p53 function as transcription factor (Flaman et al, PNAS 1995). We compared the detection of TP53 mutations in MDS and AML by FASAY and NGS approaches. Methods The 84 patients analyzed included 10 AML, 10 higher risk MDS, and 64 lower risk MDS with del 5q. RNA and DNA were extracted from marrow mononuclear cells. TP53 mutations were detected on RNA by FASAY where, after amplification of the TP53 mRNA, the PCR product is co transfected with an open gap repair plasmid leading, by homologous recombination, to p53 protein expression in the yeast. The yeast strain used is dependent on p53 functionality for growth and color and detection of more than 10% of small red yeast colonies defines a non-functional FASAY result. All non-functional FASAY were confirmed by the split versions of the test and TP53 defects were characterized by Sanger sequencing. The detection limit is around 10% in our hands (Manie E, Cancer Res 2009). In parallel, TP53 mutations were detected on DNA by NGS using the IRON II plate design and pyrosequencing on a GS Junior System (Roche). (Kohlmann, Leukemia 2011).FASAY (+Sanger sequencing) and NGS were performed in two different labs. Results By FASAY, 47 patients (56%) had a functional p53 and 37 cases (44%) a non-functional p53 and a mutation was confirmed by Sanger in all non functional cases. By NGS analysis, no TP53 mutation was found in 47 cases (56%) and a mutation was detected in 37 cases (44%). In the 37 mutated cases by NGS, the median proportion of mutated allele was 35% (range 3 to 99%), including a median of 72%, 35%, 25 % in AML, higher risk MDS and lower risk MDS with del 5q, respectively. The mutated clone size was lower than 10% in only 2 patients who both had lower risk MDS with del 5q (3 and 6%, respectively). A perfect correlation between FASAY and NGS was found in 80 (95.5%) cases. The 4 discordant cases included a mutation detected only by FASAY in 2 cases, and only by NGS in 2 cases. Undetected mutations by NGS were insertions of intronic sequences (intron 9) not explored by the technique used. These insertions resulted in non-functional protein well detected by FASAY which analyses the global cDNA sequence including splicing defects. Undetected mutations by FASAY were mutations in which the percentage of mutated alleles was less than 10% (3% and 6 % respectively). Finally, while the cost of NGS analysis for TP53 mutation is around 200 euros when performed alone (and around 2000 euros when combined to analysis of the 30 main other genes involved in MDS and AML), the cost of the FASAY technique is around 20 euros (prices including reagents only). Conclusion The FASAY technique is a cheap method, that in spite of a sensitivity of only 10%, was able to detect 98% of TP53 mutations detected by NGS. In fact those mutations appear to involve generally relatively large clones in MDS and AML. FASAY could also detect 2 atypical intronic mutations overlooked by NGS. Demonstrating in such difficult cases that the resulting p53 protein is non functional and therefore probably has pathophysiological significance, is an advantage of FASAY .The combination of the 2 methods, and especially the combination of DNA and RNA analysis, may be useful in such cases. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 39 (11) ◽  
pp. 1214-1219 ◽  
Author(s):  
Cécile Bally ◽  
Aline Renneville ◽  
Claude Preudhomme ◽  
M. Legrand ◽  
Lionel Adès ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 16 ◽  
Author(s):  
Anna E. Semenova ◽  
Igor V. Sergienko ◽  
Diego García-Giustiniani ◽  
Lorenzo Monserrat ◽  
Anna B. Popova ◽  
...  

Russian patients with familial hypercholesterolemia (FH) were screened for pathogenic mutations using targeted next generation sequencing. Genetic testing was performed in 52 probands with definite or probable FH based on the Dutch lipid clinic network criteria (DLCN score ≥ 6). Blood samples were studied by massive parallel sequencing (Illumina HiSeq 1500 platform) using a custom capture library related to dyslipidemia and premature atherosclerosis. Mutations considered to be responsible for monogenic FH were identified in 48% of the probands: 24 with mutations in the LDLR gene and two with a mutation in the APOB gene. There were 22 pathogenic/likely pathogenic mutations in LDLR, eight of which have not been previously described in the literature. Four patients with a clinical picture of homozygous FH had two heterozygous LDLR mutations. Although mutation-negative patients had highly elevated total cholesterol and low-density lipoprotein cholesterol levels, only half of them had a family history of hypercholesterolemia. With respect to heterozygous FH, mutation-positive patients had higher maximum total cholesterol levels (p = 0.01), more severe carotid atherosclerotic lesions, and a higher percentage of premature peripheral artery disease (p = 0.03) than mutation-negative ones. However, the number of patients who suffered from myocardial infarction was similar between the two groups.


Sign in / Sign up

Export Citation Format

Share Document