scholarly journals PO4-14ACROLEIN, A BY-PRODUCT OF ALCOHOL-INDUCED LIPID PEROXIDATION, IMPAIRS INTESTINAL EPITHELIAL BARRIER FUNCTION AND CAUSES GUT PERMEABILITY

2017 ◽  
Vol 52 (suppl_1) ◽  
pp. i31-i49
Author(s):  
Wei-Yang Chen ◽  
Jingwen Zhang ◽  
Min Wang ◽  
Shirish Barve ◽  
Craig McClain ◽  
...  
2018 ◽  
pp. MCB.00010-18 ◽  
Author(s):  
Jun-Yao Wang ◽  
Yu-Hong Cui ◽  
Lan Xiao ◽  
Hee Kyoung Chung ◽  
Yunzhan Zhang ◽  
...  

The mammalian intestinal epithelium establishes a selectively permeable barrier that supports nutrient absorption and prevents intrusion by luminal noxious substances and microbiota. The effectiveness and integrity of the barrier function are tightly regulated via well-controlled mechanisms. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control diverse cellular processes, but their roles in the regulation of gut permeability remain largely unknown. Here, we report that the T-UCR uc.173 enhances the intestinal epithelial barrier function by antagonizing microRNA 29b (miR-29b). Decreasing the levels of uc.173 by gene silencing led to dysfunction of the intestinal epithelial barrier in cultured cells and increased the vulnerability of the gut barrier to septic stress in mice. Uc.173 specifically stimulated translation of the tight junction (TJ) claudin-1 (CLDN1) by associating with miR-29b rather than directly binding to CLDN1 mRNA. Uc.173 acted as a natural decoy RNA for miR-29b that interacted with CLDN1 mRNA via the 3’ -untranslated region and repressed its translation. Ectopically expressed uc.173 abolished the association of miR-29b with CLDN1 mRNA and restored claudin-1 expression to normal levels in cells overexpressing miR-29b, thus rescuing the barrier function. These results highlight a novel function of uc.173 in controlling gut permeability and define a mechanism by which uc.173 stimulates claudin-1 translation by decreasing the availability of miR-29b to CLDN1 mRNA.


2016 ◽  
Vol 27 (4) ◽  
pp. 617-626 ◽  
Author(s):  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Shan Cao ◽  
Lan Liu ◽  
Hee Kyoung Chung ◽  
...  

Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.


2010 ◽  
Vol 4 (5) ◽  
pp. 637-651 ◽  
Author(s):  
Susanne A Snoek ◽  
Marleen I Verstege ◽  
Guy E Boeckxstaens ◽  
René M van den Wijngaard ◽  
Wouter J de Jonge

2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2013 ◽  
Vol 33 (10) ◽  
pp. 1457-1469 ◽  
Author(s):  
Kirsten E. Pijls ◽  
Daisy M. A. E. Jonkers ◽  
Elhaseen E. Elamin ◽  
Ad A. M. Masclee ◽  
Ger H. Koek

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Alexander Shea Dowdell ◽  
Ian Cartwright ◽  
Rachael Kostelecky ◽  
Tyler Ross ◽  
Nichole Welch ◽  
...  

Epigenomics ◽  
2021 ◽  
Author(s):  
Bing Li ◽  
Yan Li ◽  
Lixiang Li ◽  
Yu Yu ◽  
Xiang Gu ◽  
...  

Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCR were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


Sign in / Sign up

Export Citation Format

Share Document