scholarly journals Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions

Author(s):  
Peter Stacey ◽  
Francis Clegg ◽  
Christopher Sammon

Abstract Exposure to respirable crystalline silica (RCS) is potentially hazardous to the health of thousands of workers in Great Britain. Both X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy can be used to measure RCS to assess exposures. The current method outlined in the Health and Safety Executive’s (HSE) Methods for the Determination of Hazardous Substances (MDHS) guidance series is ‘MDHS 101 Crystalline silica in respirable airborne dust - Direct-on-filter analyses by infrared spectroscopy or x-ray’. This describes a procedure for the determination of time-weighted average concentrations of RCS either as quartz or cristobalite in airborne dust. FTIR is more commonly employed because it is less expensive, potentially portable and relatively easy to use. However, the FTIR analysis of RCS is affected by spectral interference from silicates. Chemometric techniques, known as Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), are two computational processes that have the capability to remove spectral interference from FTIR spectra and correlate spectral features with constituent concentrations. These two common chemometric processes were tested on artificial mixtures of quartz and kaolinite in coal dust using the same commercially available software package. Calibration, validation and prediction samples were prepared by collecting aerosols of these dusts onto polyvinylchloride (PVC) filters using a Safety in Mines Personal Dust Sampler (SIMPEDS) respirable cyclone. PCR and PLSR analyses were compared when processing the same spectra. Good correlations between the target values, measured using XRD, were obtained for both the PCR and PLSR models e.g. 0.98–0.99 (quartz), 0.98–0.98 (kaolinite) and 0.96–0.97 (coal). The level of agreement between PCR and PLSR was within the 95% confidence value for each analyte. Slight differences observed between predicted PCR and PLSR values were due to the number of optimal principal components applied to each chemometric process. The presence of kaolinite in these samples caused an 18% overestimation of quartz, for the FTIR, when following MDHS 101 without a chemometric method. Chemometric methods are a useful approach to obtain interference-free results for the measurement of RCS from some workplace environments and to provide a multicomponent analysis to better characterise exposures of workers.

2014 ◽  
Vol 70 (5) ◽  
Author(s):  
Nor Fazila Rasaruddin ◽  
Mas Ezatul Nadia Mohd Ruah ◽  
Mohamed Noor Hasan ◽  
Mohd Zuli Jaafar

This paper shows the determination of iodine value (IV) of pure and frying palm oils using Partial Least Squares (PLS) regression with application of variable selection. A total of 28 samples consisting of pure and frying palm oils which acquired from markets. Seven of them were considered as high-priced palm oils while the remaining was low-priced. PLS regression models were developed for the determination of IV using Fourier Transform Infrared (FTIR) spectra data in absorbance mode in the range from 650 cm-1 to 4000 cm-1. Savitzky Golay derivative was applied before developing the prediction models. The models were constructed using wavelength selected in the FTIR region by adopting selectivity ratio (SR) plot and correlation coefficient to the IV parameter. Each model was validated through Root Mean Square Error Cross Validation, RMSECV and cross validation correlation coefficient, R2cv. The best model using SR plot was the model with mean centring for pure sample and model with a combination of row scaling and standardization of frying sample. The best model with the application of the correlation coefficient variable selection was the model with a combination of row scaling and standardization of pure sample and model with mean centering data pre-processing for frying sample. It is not necessary to row scaled the variables to develop the model since the effect of row scaling on model quality is insignificant.


Sign in / Sign up

Export Citation Format

Share Document