grape musts
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 7 (8) ◽  
pp. 678
Author(s):  
Marie-José Ayoub ◽  
Jean-Luc Legras ◽  
Pierre Abi-Nakhoul ◽  
Huu-Vang Nguyen ◽  
Rachad Saliba ◽  
...  

A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a “winery effect” on strains’ relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further “vicinity effect”. Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.


LWT ◽  
2021 ◽  
pp. 112318
Author(s):  
P.M. Izquierdo-Cañas ◽  
A. Mena-Morales ◽  
J. Pérez-Navarro ◽  
E. García-Romero ◽  
V.M. Cejudo-Martín de Almagro ◽  
...  
Keyword(s):  

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 126
Author(s):  
Jesse J. Aplin ◽  
Victoria D. Paup ◽  
Carolyn F. Ross ◽  
Charles G. Edwards

Inoculation of selected non-Saccharomyces yeasts with Saccharomyces cerevisiae as means to produce Merlot wines with reduced ethanol contents was investigated. Fermentations of grape musts (25.4° Brix, pH 3.50, and 4.23 g/L titratable acidity) were conducted in stainless steel tanks inoculated with Metschnikowia pulcherrima strains P01A016 or NS-MP or Meyerozyma guilliermondii P40D002 with S. cerevisiae Syrah added after three days. After fermentation, wines with Mt. pulcherrima contained 13.8% (P01A016) or 13.9% (NS-MP) v/v ethanol, respectively, amounts which were lower than in wines with S. cerevisiae alone (14.9% v/v). Delayed inoculation of must with S. cerevisiae (day 3) or musts with My. guilliermondii contained elevated concentrations of ethyl acetate (145 and 148 mg/L, respectively), concentrations significantly higher than those with S. cerevisiae inoculated on day 0 or with either strain of Mt. pulcherrima. Descriptive sensory analysis revealed a significant effect due to panelist but not due to Mt. pulcherrima or My. guilliermondii. This research indicates the potential for commercial application of these yeasts towards the production of reduced alcohol wines but without imparting negative sensory attributes.


LWT ◽  
2021 ◽  
pp. 112083
Author(s):  
María Hijosa-Valsero ◽  
Jerson Garita-Cambronero ◽  
Ana I. Paniagua-García ◽  
Rebeca Díez-Antolínez
Keyword(s):  

mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Taylor Reiter ◽  
Rachel Montpetit ◽  
Shelby Byer ◽  
Isadora Frias ◽  
Esmeralda Leon ◽  
...  

ABSTRACT Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics. IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.


2021 ◽  
Vol 5 (4) ◽  
pp. 82-89
Author(s):  
María Laura Raymond Eder ◽  
Alberto Luis Rosa

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10836
Author(s):  
Kerri L. Steenwerth ◽  
Ian Morelan ◽  
Ruby Stahel ◽  
Rosa Figueroa-Balderas ◽  
Dario Cantu ◽  
...  

Background The geographic and temporal distributions of bacterial and fungal populations are poorly understood within the same wine grape cultivar. In this work, we describe the microbial composition from ‘Pinot noir’ must with respect to vintage, growing region, climate, and must chemistry across the states of California and Oregon, USA. Materials and Methods We sampled ‘Pinot noir’ clone 667 clusters from 15 vineyards existing in a latitudinal gradient spanning nearly 1,200 km in California and Oregon for two vintages (2016 and 2017). Regions included five American Viticultural Areas (AVA). In order from southern California to Oregon, these AVAs were Santa Barbara, Monterey, Sonoma, Mendocino, and Willamette Valley. Uninoculated grape musts were subjected to 16S rRNA gene and ITS-1 amplicon sequencing to assess composition of microbial communities. We also measured grape maturity metrics. Finally, to describe regions by precipitation and growing degree days, we queried the Parameter-elevation Regressions on Independent Slopes Model (PRISM) spatial climate dataset. Results Most of the dominant bacterial taxa in must samples were in the family Enterobacteriaceae, notably the lactic acid bacteria or the acetic acid bacteria groups, but some, like the betaproteobacterial genus Massilia, belonged to groups not commonly found in grape musts. Fungal communities were dominated by Hanseniaspora uvarum (Saccharomycetaceae). We detected relationships between covariates (e.g., vintage, precipitation during the growing season, pH, titratable acidity, and total soluble solids) and bacterial genera Gluconobacter and Tatumella in the family Enterobacteraceae, Sphingomonas (Sphingomonodaceae), Lactobacillus (Lactobacillaceae), and Massilia (Oxalobacteraceae), as well as fungal genera in Hanseniaspora, Kazachstania, Lachancea, Torulaspora in the family Saccharomycetaceae, as well as Alternaria (Pleosporaceae), Erysiphe (Erysiphaceae), and Udeniomyces (Cystofilobasidiaceae). Fungal community distances were significantly correlated with geographic distances, but this was not observed for bacterial communities. Climate varied across regions and vintages, with growing season precipitation ranging from 11 mm to 285 mm and growing degree days ranging from 1,245 to 1,846. Discussion We determined that (1) bacterial beta diversity is structured by growing season precipitation, (2) fungal beta diversity reflects growing season precipitation and growing degree days, and (3) microbial differential abundances of specific genera vary with vintage, growing season precipitation, and fruit maturity metrics. Further, the correlation between fungal community dissimilarities and geographic distance suggests dispersal limitation and the vineyard as a source for abundant fungal taxa. Contrasting this observation, the lack of correlation between bacterial community dissimilarity and geographic distance suggests that environmental filtering is shaping these communities.


2021 ◽  
Author(s):  
Taylor Reiter ◽  
Rachel Montpetit ◽  
Shelby Byer ◽  
Isadora Frias ◽  
Esmeralda Leon ◽  
...  

In wine fermentations, the metabolic activity of both Saccharomyces cerevisiae and non-Saccharomyces organisms impact wine chemistry. Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur non-randomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. We used ribosomal DNA amplicon sequencing of grape must and RNA sequencing of primary fermentations to profile fermentations from 15 vineyards in California and Oregon across two vintages. We find that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing did not correlate with transcript abundance from those organisms within the RNA sequencing data, suggesting that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing are not active during these inoculated fermentations. Additionally, we detect genetic signatures of vineyard site and region during fermentation that are predictive for each vineyard site, identifying nitrogen, sulfur, and thiamine metabolism as important factors for distinguishing vineyard site and region.


Sign in / Sign up

Export Citation Format

Share Document