γ-Glutamyltranspeptidase essential for the metabolism of γ-glutamyl compounds in bacteria and its application

Author(s):  
Hideyuki Suzuki

ABSTRACT The enzymatic characteristics of γ-glutamyltranspeptidase were elucidated. The catalytic nucleophile of the enzymatic reaction of Escherichia coli γ-glutamyltranspeptidase was identified as the Oγ of the N-terminal Thr-residue of the small subunit. It was demonstrated that the inactive precursor of γ-glutamyltranspeptidase is processed autocatalytically and intramolecularly into the active heterodimeric mature enzyme via an ester intermediate. The catalytic nucleophile of this processing reaction was identified as the same Oγ atom of the N-terminal Thr-residue of the small subunit. These results were also supported by the three-dimensional structures of the γ-glutamyl enzyme intermediate and of the precursor-mimicked T391A nonprocessable mutant enzyme. Applications of transpeptidation and hydrolysis activities of bacterial γ-glutamyltranspeptidases were developed. Using transpeptidation activity, efficient enzymatic production of useful γ-glutamyl compounds, such as prodrug for Parkinson's disease, theanine and kokumi compound, was enabled. Hydrolysis activity was used as glutaminase and the mutant enzymes gaining glutaryl-7-aminocephalosporanic acid acylase activity were isolated.

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


1991 ◽  
Vol 115 (3) ◽  
pp. 597-605 ◽  
Author(s):  
J Frank ◽  
P Penczek ◽  
R Grassucci ◽  
S Srivastava

A reconstruction, at 40 A, of the Escherichia coli ribosome imaged by cryo-electron microscopy, obtained from 303 projections by a single-particle method of reconstruction, shows the two subunits with unprecedented clarity. In the interior of the subunits, a complex distribution of higher mass density is recognized, which is attributed to ribosomal RNA. The masses corresponding to the 16S and 23S components are linked in the region of the platform of the small subunit. Thus the topography of the rRNA regions responsible for protein synthesis can be described.


1990 ◽  
Vol 108 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Shigehiro Kamitori ◽  
Akihiro Okamoto ◽  
Ken Hirotsu ◽  
Taiichi Higuchi ◽  
Seiki Kuraxnitsu ◽  
...  

1995 ◽  
Vol 312 (1) ◽  
pp. 281-286 ◽  
Author(s):  
S V Calugaru ◽  
B G Hall ◽  
M L Sinnott

Plasmids containing the ebgAo and ebgAa genes of Escherichia coli under the control of the lac repressor and promoter have been constructed and inserted into Salmonella typhimurium CH3. This system expresses the large subunit of the ebgo and ebga beta-galactosidase in high yield (20-60% of total protein). The large subunits have been purified to homogeneity. As isolated they are tetramers of significant catalytic activity; the N-terminal amino acid residue is Met, but it is not formylated. The kcat. values for a series of aryl galactosides were 6-200-fold reduced from the corresponding values for the holoenzymes. kcat/Km Values for glycosides of acidic aglycones, though, were unchanged, whilst kcat./Km values for galactosides of less acidic aglycones showed a modest (up to 10-fold) decrease. The kcat. values for glycosides of acidic aglycones hydrolysed by ebgo and ebga large subunits were essentially invariant with aglycone pK, suggesting that hydrolysis of the galactosyl-enzyme intermediate had become rate-determining for these substrates. Rate-determining hydrolysis of the glycosyl-enzyme intermediate was confirmed by pre-steady-state measurements and nucleophilic competition with methanol. Absence of the small subunit was thus estimated to cause a 200-fold decrease in degalactosylation rate for ebgo and a 20-fold one for ebga. beta 1g(V/K) values of -0.57 +/- 0.08 for ebgo and -0.54 +/- 0.08 for ebga isolated subunits were significantly more negative than for holoenzymes. It is suggested that the small subunit is associated with the optimal positioning of the electrophilic Mg2+ ions in these enzymes. Use of PCR in the construction of the plasmid also inadvertently led to the production of psi ebgo large subunit in which there was a PCR-introduced Leu9-->His change. Values of kcat. for aryl galactosides, calculated on the assumption that the psi ebgo large subunit, like the ebgo and ebga large subunits, was 100% active as isolated, were about an order of magnitude lower than for true ebgo large subunit, whilst Km values were similar. The very significant kinetic effect of this inadvertant site-undirected mutagenesis indicates that quite large kinetic effects of amino-acid replacements in enzymes may have no obvious mechanistic significance.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Sign in / Sign up

Export Citation Format

Share Document