Screening of tenuazonic acid production-inducing compounds and identification of NPD938 as a regulator of fungal secondary metabolism

Author(s):  
Takayuki Motoyama ◽  
Tomoaki Ishii ◽  
Takashi Kamakura ◽  
Hiroyuki Osada

Abstract The control of secondary metabolism in fungi is essential for the regulation of various cellular functions. In this study, we searched the RIKEN Natural Products Depository (NPDepo) chemical library for inducers of tenuazonic acid (TeA) production in the rice blast fungus Pyricularia oryzae and identified NPD938. NPD938 transcriptionally induced TeA production. We explored the mode of action of NPD938 and observed that this compound enhanced TeA production via LAE1, a global regulator of fungal secondary metabolism. NPD938 could also induce production of terpendoles and pyridoxatins in Tolypocladium album RK99-F33. Terpendole production was induced transcriptionally. We identified the pyridoxatin biosynthetic gene cluster among transcriptionally induced secondary metabolite biosynthetic gene clusters. Therefore, NPD938 is useful for the control of fungal secondary metabolism.

2020 ◽  
Author(s):  
Hiroki Takahashi ◽  
Maiko Umemura ◽  
Masaaki Shimizu ◽  
Akihiro Ninomiya ◽  
Yoko Kusuya ◽  
...  

AbstractFilamentous fungi produce various bioactive compounds that are biosynthesized by a set of proteins encoded in biosynthetic gene clusters (BGCs). For an unknown reason, large parts of the BGCs are transcriptionally silent under laboratory conditions, which has hampered the discovery of novel fungal compounds. The transcriptional regulation of fungal secondary metabolism is not fully understood from an evolutionary viewpoint. To address this issue, we conducted comparative genomic and transcriptomic analyses using five closely related species of the Aspergillus section Fumigati: Aspergillus fumigatus, Aspergillus lentulus, Aspergillus udagawae, Aspergillus pseudoviridinutans, and Neosartorya fischeri. From their genomes, 298 secondary metabolite (SM) core genes were identified, with 27.4% to 41.5% being unique to a species. Compared with the species-specific genes, a set of section-conserved SM core genes was expressed at a higher rate and greater magnitude, suggesting that their expression tendency is correlated with the BGC distribution pattern. However, the section-conserved BGCs showed diverse expression patterns across the Fumigati species. Thus, not all common BGCs across species appear to be regulated in an identical manner. A consensus motif was sought in the promoter region of each gene in the 15 section-conserved BGCs among the Fumigati species. A conserved motif was detected in only two BGCs including the gli cluster. The comparative transcriptomic and in silico analyses provided insights into how the fungal SM gene cluster diversified at a transcriptional level, in addition to genomic rearrangements and cluster gains and losses. This information increases our understanding of the evolutionary processes associated with fungal secondary metabolism.Author summaryFilamentous fungi provide a wide variety of bioactive compounds that contribute to public health. The ability of filamentous fungi to produce bioactive compounds has been underestimated, and fungal resources can be developed into new drugs. However, most biosynthetic genes encoding bioactive compounds are not expressed under laboratory conditions, which hampers the use of fungi in drug discovery. The mechanisms underlying silent metabolite production are poorly understood. Here, we attempted to show the diversity in fungal transcriptional regulation from an evolutionary viewpoint. To meet this goal, the secondary metabolisms, at genomic and transcriptomic levels, of the most phylogenetically closely related species in Aspergillus section Fumigati were compared. The conserved biosynthetic gene clusters across five Aspergillus species were identified. The expression levels of the well-conserved gene clusters tended to be more active than the species-specific, which were not well-conserved, gene clusters. Despite highly conserved genetic properties across the species, the expression patterns of the well-conserved gene clusters were diverse. These findings suggest an evolutionary diversification at the transcriptional level, in addition to genomic rearrangements and gains and losses, of the biosynthetic gene clusters. This study provides a foundation for understanding fungal secondary metabolism and the potential to produce diverse fungal-based chemicals.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Xiaohe Jin ◽  
Yunlong Zhang ◽  
Ran Zhang ◽  
Kathy-Uyen Nguyen ◽  
Jonathan S. Lindsey ◽  
...  

Tolyporphins A–R are unusual tetrapyrrole macrocycles produced by the non-axenic filamentous cyanobacterium HT-58-2. A putative biosynthetic gene cluster for biosynthesis of tolyporphins (here termed BGC-1) was previously identified in the genome of HT-58-2. Here, homology searching of BGC-1 in HT-58-2 led to identification of similar BGCs in seven other filamentous cyanobacteria, including strains Nostoc sp. 106C, Nostoc sp. RF31YmG, Nostoc sp. FACHB-892, Brasilonema octagenarum UFV-OR1, Brasilonema octagenarum UFV-E1, Brasilonema sennae CENA114 and Oculatella sp. LEGE 06141, suggesting their potential for tolyporphins production. A similar gene cluster (BGC-2) also was identified unexpectedly in HT-58-2. Tolyporphins BGCs were not identified in unicellular cyanobacteria. Phylogenetic analysis based on 16S rRNA and a common component of the BGCs, TolD, points to a close evolutionary history between each strain and their respective tolyporphins BGC. Though identified with putative tolyporphins BGCs, examination of pigments extracted from three cyanobacteria has not revealed the presence of tolyporphins. Overall, the identification of BGCs and potential producers of tolyporphins presents a collection of candidate cyanobacteria for genetic and biochemical analysis pertaining to these unusual tetrapyrrole macrocycles.


mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Michalis Hadjithomas ◽  
I-Min Amy Chen ◽  
Ken Chu ◽  
Anna Ratner ◽  
Krishna Palaniappan ◽  
...  

ABSTRACTIn the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time inAlphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules.IMPORTANCEIMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world.


2018 ◽  
Vol 115 (28) ◽  
pp. E6650-E6658 ◽  
Author(s):  
Alexander M. Boutanaev ◽  
Anne E. Osbourn

Plants produce a plethora of natural products, including many drugs. It has recently emerged that the genes encoding different natural product pathways may be organized as biosynthetic gene clusters in plant genomes, with >30 examples reported so far. Despite superficial similarities with microbes, these clusters have not arisen by horizontal gene transfer, but rather by gene duplication, neofunctionalization, and relocation via unknown mechanisms. Previously we reported that two Arabidopsis thaliana biosynthetic gene clusters are located in regions of the genome that are significantly enriched in transposable elements (TEs). Other plant biosynthetic gene clusters also harbor abundant TEs. TEs can mediate genomic rearrangement by providing homologous sequences that enable illegitimate recombination and gene relocation. Thus, TE-mediated recombination may contribute to plant biosynthetic gene cluster formation. TEs may also facilitate establishment of regulons. However, a systematic analysis of the TEs associated with plant biosynthetic gene clusters has not been carried out. Here we investigate the TEs associated with clustered terpene biosynthetic genes in multiple plant genomes and find evidence to suggest a role for miniature inverted-repeat transposable elements in cluster formation in eudicots. Through investigation of the newly sequenced Amborella trichopoda, Aquilegia coerulea, and Kalanchoe fedtschenkoi genomes, we further show that the “block” mechanism of founding of biosynthetic gene clusters through duplication and diversification of pairs of terpene synthase and cytochrome P450 genes that is prevalent in the eudicots arose around 90–130 million years ago, after the appearance of the basal eudicots and before the emergence of the superrosid clade.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hye-Seon Kim ◽  
Jessica M. Lohmar ◽  
Mark Busman ◽  
Daren W. Brown ◽  
Todd A. Naumann ◽  
...  

Abstract Background Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. Results Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. Conclusion Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.


2019 ◽  
Vol 116 (40) ◽  
pp. 19805-19814 ◽  
Author(s):  
Zachary L. Reitz ◽  
Clifford D. Hardy ◽  
Jaewon Suk ◽  
Jean Bouvet ◽  
Alison Butler

Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate–dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization—existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)—and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate–dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.


2007 ◽  
Vol 52 (2) ◽  
pp. 574-585 ◽  
Author(s):  
Xiujun Zhang ◽  
Lawrence B. Alemany ◽  
Hans-Peter Fiedler ◽  
Michael Goodfellow ◽  
Ronald J. Parry

ABSTRACT The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken. The lactonamycin gene cluster was initially cloned from Streptomyces rishiriensis. Sequencing of ca. 61 kb of S. rishiriensis DNA revealed the presence of 57 open reading frames. These included genes coding for the biosynthesis of l-rhodinose, the sugar found in lactonamycin, and genes similar to those in the tetracenomycin biosynthetic gene cluster. Since lactonamycin production by S. rishiriensis could not be sustained, additional proof for the identity of the S. rishiriensis cluster was obtained by cloning the lactonamycin Z gene cluster from Streptomyces sanglieri. Partial sequencing of the S. sanglieri cluster revealed 15 genes that exhibited a very high degree of similarity to genes within the lactonamycin cluster, as well as an identical organization. Double-crossover disruption of one gene in the S. sanglieri cluster abolished lactonamycin Z production, and production was restored by complementation. These results confirm the identity of the genetic locus cloned from S. sanglieri and indicate that the highly similar locus in S. rishiriensis encodes lactonamycin biosynthetic genes. Precursor incorporation experiments with S. sanglieri revealed that lactonamycinone is biosynthesized in an unusual manner whereby glycine or a glycine derivative serves as a starter unit that is extended by nine acetate units. Analysis of the gene clusters and of the precursor incorporation data suggested a hypothetical scheme for lactonamycinone biosynthesis.


2017 ◽  
Vol 43 (5) ◽  
pp. 546-566 ◽  
Author(s):  
Raghavan Dinesh ◽  
Veeraraghavan Srinivasan ◽  
Sheeja T. E. ◽  
Muthuswamy Anandaraj ◽  
Hamza Srambikkal

2009 ◽  
Vol 76 (1) ◽  
pp. 283-293 ◽  
Author(s):  
Hanne Jørgensen ◽  
Kristin F. Degnes ◽  
Alexander Dikiy ◽  
Espen Fjærvik ◽  
Geir Klinkenberg ◽  
...  

ABSTRACT A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the β-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenhua Liu ◽  
Jitender Cheema ◽  
Marielle Vigouroux ◽  
Lionel Hill ◽  
James Reed ◽  
...  

Abstract Numerous examples of biosynthetic gene clusters (BGCs), including for compounds of agricultural and medicinal importance, have now been discovered in plant genomes. However, little is known about how these complex traits are assembled and diversified. Here, we examine a large number of variants within and between species for a paradigm BGC (the thalianol cluster), which has evolved recently in a common ancestor of the Arabidopsis genus. Comparisons at the species level reveal differences in BGC organization and involvement of auxiliary genes, resulting in production of species-specific triterpenes. Within species, the thalianol cluster is primarily fixed, showing a low frequency of deleterious haplotypes. We further identify chromosomal inversion as a molecular mechanism that may shuffle more distant genes into the cluster, so enabling cluster compaction. Antagonistic natural selection pressures are likely involved in shaping the occurrence and maintenance of this BGC. Our work sheds light on the birth, life and death of complex genetic and metabolic traits in plants.


Sign in / Sign up

Export Citation Format

Share Document