scholarly journals Rapid epistatic mixed-model association studies by controlling multiple polygenic effects

2020 ◽  
Vol 36 (19) ◽  
pp. 4833-4837
Author(s):  
Dan Wang ◽  
Hui Tang ◽  
Jian-Feng Liu ◽  
Shizhong Xu ◽  
Qin Zhang ◽  
...  

Abstract Summary We have developed a rapid mixed model algorithm for exhaustive genome-wide epistatic association analysis by controlling multiple polygenic effects. Our model can simultaneously handle additive by additive epistasis, dominance by dominance epistasis and additive by dominance epistasis, and account for intrasubject fluctuations due to individuals with repeated records. Furthermore, we suggest a simple but efficient approximate algorithm, which allows the examination of all pairwise interactions in a remarkably fast manner of linear with population size. Simulation studies are performed to investigate the properties of REMMAX. Application to publicly available yeast and human data has showed that our mixed model-based method has similar performance with simple linear model on computational efficiency. It took less than 40 h for the pairwise analysis of 5000 individuals genotyped with roughly 350 000 SNPs with five threads on Intel Xeon E5 2.6 GHz CPU. Availability and implementation Source codes are freely available at https://github.com/chaoning/GMAT. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Dan Wang ◽  
Hui Tang ◽  
Jian-Feng Liu ◽  
Shizhong Xu ◽  
Qin Zhang ◽  
...  

SummaryWe have developed a rapid mixed model algorithm for exhaustive genome-wide epistatic association analysis by controlling multiple polygenic effects. Our model can simultaneously handle additive by additive epistasis, dominance by dominance epistasis and additive by dominance epistasis, and account for intrasubject fluctuations due to individuals with repeated records. Furthermore, we suggest a simple but efficient approximate algorithm, which allows examination of all pairwise interactions in a remarkably fast manner of linear with population size. Application to publicly available yeast and human data has showed that our mixed model-based method has similar performance with simple linear model-based Plink on computational efficiency. It took less than 40 hours for the pairwise analysis of 5,000 individuals genotyped with roughly 350,000 SNPs with five threads on Intel Xeon E5 2.6GHz CPU.Availability and implementationSource codes are freely available at https://github.com/chaoning/GMAT.


2018 ◽  
Author(s):  
John A Lees ◽  
Marco Galardini ◽  
Stephen D Bentley ◽  
Jeffrey N Weiser ◽  
Jukka Corander

AbstractSummaryGenome-wide association studies (GWAS) in microbes face different challenges to eukaryotes and have been addressed by a number of different methods. pyseer brings these techniques together in one package tailored to microbial GWAS, allows greater flexibility of the input data used, and adds new methods to interpret the association results.Availability and Implementationpyseer is written in python and is freely available at https://github.com/mgalardini/pyseer, or can be installed through pip. Documentation and a tutorial are available at http://[email protected] and [email protected] informationSupplementary data are available online.


2019 ◽  
Author(s):  
Jia Zhao ◽  
Jingsi Ming ◽  
Xianghong Hu ◽  
Gang Chen ◽  
Jin Liu ◽  
...  

Abstract Motivation The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits. Availability and implementation The BWMR software is available at https://github.com/jiazhao97/BWMR. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (23) ◽  
pp. 4879-4885 ◽  
Author(s):  
Chao Ning ◽  
Dan Wang ◽  
Lei Zhou ◽  
Julong Wei ◽  
Yuanxin Liu ◽  
...  

Abstract Motivation Current dynamic phenotyping system introduces time as an extra dimension to genome-wide association studies (GWAS), which helps to explore the mechanism of dynamical genetic control for complex longitudinal traits. However, existing methods for longitudinal GWAS either ignore the covariance among observations of different time points or encounter computational efficiency issues. Results We herein developed efficient genome-wide multivariate association algorithms for longitudinal data. In contrast to existing univariate linear mixed model analyses, the proposed method has improved statistic power for association detection and computational speed. In addition, the new method can analyze unbalanced longitudinal data with thousands of individuals and more than ten thousand records within a few hours. The corresponding time for balanced longitudinal data is just a few minutes. Availability and implementation A software package to implement the efficient algorithm named GMA (https://github.com/chaoning/GMA) is available freely for interested users in relevant fields. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (19) ◽  
pp. 4957-4959
Author(s):  
David B Blumenthal ◽  
Lorenzo Viola ◽  
Markus List ◽  
Jan Baumbach ◽  
Paolo Tieri ◽  
...  

Abstract Summary Simulated data are crucial for evaluating epistasis detection tools in genome-wide association studies. Existing simulators are limited, as they do not account for linkage disequilibrium (LD), support limited interaction models of single nucleotide polymorphisms (SNPs) and only dichotomous phenotypes or depend on proprietary software. In contrast, EpiGEN supports SNP interactions of arbitrary order, produces realistic LD patterns and generates both categorical and quantitative phenotypes. Availability and implementation EpiGEN is implemented in Python 3 and is freely available at https://github.com/baumbachlab/epigen. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (14) ◽  
pp. 4154-4162
Author(s):  
Meiyue Wang ◽  
Ruidong Li ◽  
Shizhong Xu

Abstract Motivation Genome-wide association studies (GWAS) are still the primary steps toward gene discovery. The urgency is more obvious in the big data era when GWAS are conducted simultaneously for thousand traits, e.g. transcriptomic and metabolomic traits. Efficient mixed model association (EMMA) and genome-wide efficient mixed model association (GEMMA) are the widely used methods for GWAS. An algorithm with high computational efficiency is badly needed. It is interesting to note that the test statistics of the ordinary ridge regression (ORR) have the same patterns across the genome as those obtained from the EMMA method. However, ORR has never been used for GWAS due to its severe shrinkage on the estimated effects and the test statistics. Results We introduce a degree of freedom for each marker effect obtained from ORR and use it to deshrink both the estimated effect and the standard error so that the Wald test of ORR is brought back to the same level as that of EMMA. The new method is called deshrinking ridge regression (DRR). By evaluating the methods under three different model sizes (small, medium and large), we demonstrate that DRR is more generalized for all model sizes than EMMA, which only works for medium and large models. Furthermore, DRR detect all markers in a simultaneous manner instead of scanning one marker at a time. As a result, the computational time complexity of DRR is much simpler than EMMA and about m (number of genetic variants) times simpler than that of GEMMA when the sample size is way smaller than the number of markers. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Jan A. Freudenthal ◽  
Markus J. Ankenbrand ◽  
Dominik G. Grimm ◽  
Arthur Korte

AbstractMotivationGenome-wide association studies (GWAS) are one of the most commonly used methods to detect associations between complex traits and genomic polymorphisms. As both genotyping and phenotyping of large populations has become easier, typical modern GWAS have to cope with massive amounts of data. Thus, the computational demand for these analyses grew remarkably during the last decades. This is especially true, if one wants to implement permutation-based significance thresholds, instead of using the naïve Bonferroni threshold. Permutation-based methods have the advantage to provide an adjusted multiple hypothesis correction threshold that takes the underlying phenotypic distribution into account and will thus remove the need to find the correct transformation for non Gaussian phenotypes. To enable efficient analyses of large datasets and the possibility to compute permutation-based significance thresholds, we used the machine learning framework TensorFlow to develop a linear mixed model (GWAS-Flow) that can make use of the available CPU or GPU infrastructure to decrease the time of the analyses especially for large datasets.ResultsWe were able to show that our application GWAS-Flow outperforms custom GWAS scripts in terms of speed without loosing accuracy. Apart from p-values, GWAS-Flow also computes summary statistics, such as the effect size and its standard error for each individual marker. The CPU-based version is the default choice for small data, while the GPU-based version of GWAS-Flow is especially suited for the analyses of big data.AvailabilityGWAS-Flow is freely available on GitHub (https://github.com/Joyvalley/GWAS_Flow) and is released under the terms of the MIT-License.


2020 ◽  
Vol 36 (15) ◽  
pp. 4374-4376
Author(s):  
Ninon Mounier ◽  
Zoltán Kutalik

Abstract Summary Increasing sample size is not the only strategy to improve discovery in Genome Wide Association Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve inference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only increases power, but also has the potential to dissect direct and indirect biological mechanisms. Availability and implementation bGWAS package is freely available under a GPL-2 License, and can be accessed, alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document