Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid†

2019 ◽  
Vol 101 (5) ◽  
pp. 893-905 ◽  
Author(s):  
Katrin Gegenfurtner ◽  
Thomas Fröhlich ◽  
Miwako Kösters ◽  
Pascal Mermillod ◽  
Yann Locatelli ◽  
...  

Abstract The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.

Endocrines ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 171-184
Author(s):  
Filippo Egalini ◽  
Mirko Parasiliti Caprino ◽  
Giulia Gaggero ◽  
Vincenzo Cappiello ◽  
Jacopo Giannelli ◽  
...  

Autoimmune rheumatological diseases’ incidence and prevalence have risen over the last decades and they are becoming increasingly important worldwide. Thyroid autoimmune diseases share with them an imbalance in the immune system that lead to a pro-inflammatory environment. Usually this is the result of a multi-factorial process. In fact, it includes not only a possible genetic predisposition, but also environmental causes like microbiota dysbiosis, diet rich in processed foods, exposure to toxicants and infections. However, many aspects are currently under study. This paper aims to examine the factors that participate in the developing of rheumatological and thyroid autoimmune diseases. Moreover, as glucocorticoids still represent a leading treatment for systemic autoimmune rheumatological diseases, our secondary aim is to summarize the main effects of glucocorticoids treatment focusing on iatrogenic Cushing’s syndrome and glucocorticoids’ withdrawal syndrome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zongzhi Liu ◽  
Wei Chen ◽  
Zilong Zhang ◽  
Junyun Wang ◽  
Yi-Kun Yang ◽  
...  

The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.


2021 ◽  
Author(s):  
Hongwei Chu ◽  
Changqing Wu ◽  
Qun Zhao ◽  
Rui Sun ◽  
Kuo Yang ◽  
...  

Abstract Sorafenib is commonly used to treat advanced human hepatocellular carcinoma (HCC). However, clinical efficacy has been limited by drug resistance. In this study, we used label-free quantitative proteomic analysis to systematically investigate the underlying mechanisms of sorafenib resistance in HCC cells. A total of 1709 proteins were confidently quantified. Among them, 89 were differentially expressed, and highly enriched in the processes of cell-cell adhesion, negative regulation of apoptosis, response to drug and metabolic processes involving in sorafenib resistance. Notably, folate receptor α (FOLR1) was found to be significantly upregulated in resistant HCC cells. In addition, in-vitro studies showed that overexpression of FOLR1 decreased the sensitivity of HCC cells to sorafenib, whereas siRNA-directed knockdown of FOLR1 increased the sensitivity of HCC cells to sorafenib. Immunoprecipitation-mass spectrometry analysis suggested a strong link between FOLR1 and autophagy related proteins. Further biological experiments found that FOLR1-related sorafenib resistance was accompanied by the activation of autophagy, whereas inhibition of autophagy significantly reduced FOLR1-induced cell resistance. These results suggest the driving role of FOLR1 in HCC resistance to sorafenib, which may be exerted through FOLR1-induced autophagy. Therefore, this study may provide new insights into understanding the mechanism of sorafenib resistance.


1971 ◽  
Vol 11 (51) ◽  
pp. 375 ◽  
Author(s):  
AWH Braden

One hundred five-year-old Merino ewes in medium condition (44 kg) were fed at one-third of the maintenance level from the start of joining until 3-4 weeks post-coitum (P.C.). The mean decrease in liveweight in the 3-4 weeks was 1.5 kg/week. One hundred similar ewes were fed so as to maintain liveweight. A ram was joined with each group during daylight hours for 15 days, and the course of mating observed constantly. Ewes were killed either 1-2 days p.c. or 24-38 days p.c. There was no evidence of an effect of the under-nutrition on mating behaviour, number of spermatoza in the ewe genital tract, fertilization rate (89 per cent for both) or early embryo losses (7 per cent and 3 per cent). The relatively low embryonic loss appeared to be related to the low ovulation rate (1.16).


2013 ◽  
Vol 25 (1) ◽  
pp. 202
Author(s):  
L. O'Hara ◽  
N. Forde ◽  
D. Rizos ◽  
V. Maillo ◽  
A. D. Ealy ◽  
...  

The aim of this study was to investigate the effect of short term progesterone (P4) supplementation on circulating P4 concentrations, corpus luteum (CL) size, and conceptus development in cattle. The oestrous cycles of crossbred beef heifers were synchronised using a 7-day PRID® Delta (1.55 g P4) treatment with administration of a PGF2α analog (Enzaprost®) the day before PRID® Delta removal. Only those recorded in standing oestrus (Day 0) were used. In Experiment 1, heifers were randomly assigned to 1 of 5 groups: (1) control: no treatment, (2) placebo: insertion of a blank device (no P4) from Day 3 to 7, (3) insertion of a PRID® Delta from Day 3 to 7, (4) insertion of a PRID® Delta from Day 3 to 5, or (v5) insertion of a PRID® Delta from Day 5 to 7. In vitro produced blastocysts were transferred to each heifer on Day 7 (10 blastocysts per heifer) and conceptuses were recovered at slaughter on Day 14. In Experiment 2 heifers were artificially inseminated at oestrus and randomly assigned to 1 of 3 treatment groups (1) placebo, (2) PRID® Delta from Day 3 to 5, or (3) PRID® Delta from Day 3 to 7. All heifers were slaughtered on Day 16, and recovered conceptuses were incubated in synthetic oviduct fluid medium for 24 h; spent media and uterine flushes were analysed for interferon-tau (IFNT). In both experiments, daily blood samples were taken to measure serum P4 concentration. Data were analysed using the PROC MIXED procedure of SAS (SAS Institute Inc., Cary, NC, USA). Insertion of a PRID® Delta resulted in an increase (P < 0.05) in serum P4, which declined following removal. In Experiment 1, serum P4 concentration was significantly lower from Day 9 to 14 (P < 0.05) and Day 14 CL weight was lower in the PRID® Delta Day 3 to 7 group than the placebo or control groups. P4 supplementation from Day 3 to 5 (17.0 ± 1.4 mm) or Day 3 to 7 (11.3 ± 2.3 mm) increased conceptus length compared to the placebo (2.1 ± 1.8 mm). In Experiment 2, serum P4 was significantly lower in the two supplemented groups following PRID® Delta removal compared with the placebo (P < 0.05) and was associated with a lower CL weight in the Day 3 to 7 group. Supplementation from Day 3 to 5 (94.0 ± 18.8 mm) or Day 3 to 7 (143.6 ± 20.6 mm) increased conceptus length on Day 16 compared to the placebo (50.3 ± 17.4 mm). Conceptus length was strongly correlated with the concentration of IFNT in the uterine flush (r = 0.58; P = 0.011) and spent culture medium (r = 0.68; P < 0.002). These findings highlight the somewhat paradoxical effects of P4 supplementation when given in the early metoestrus period in terms of its positive effect on conceptus development and its potentially negative effects on CL lifespan. Supported by CEVA Sante Animale and Science Foundation Ireland (07/SRC/B1156).


2008 ◽  
Vol 20 (1) ◽  
pp. 177
Author(s):  
P. Bermejo-Álvarez ◽  
A. Gutiérrez-Adán ◽  
P. Lonergan ◽  
D. Rizos

The faster-developing blastocysts in IVC systems are generally considered more viable and better able to survive following cryopreservation or embryo transfer than those that develop more slowly. However, evidence from several species indicates that embryos that reach the blastocyst stage earliest are more likely to be males than females. The aim of this study was to determine whether the duration of maturation could affect early embryo development and, furthermore, the sex ratio of early- or late-cleaved embryos and blastocysts. Cumulus–oocyte complexes were matured in vitro for 16 h (n = 2198) or 24 h (n = 2204). Following IVF, presumptive zygotes from each group were examined every 4 h between 24 and 48 h postinsemination (hpi) for cleavage, and all embryos were cultured to Day 8 in synthetic oviduct fluid to assess blastocyst development. Two-cell embryos at each time point and blastocysts on Days 6, 7, and 8 from both groups were snap-frozen individually for sexing. Sexing was performed with a single PCR using a specific primer BRY. There was a significantly lower number of cleaved embryos from the 16-h compared with the 24-h maturation group at 28 (10.0 � 1.51 v. 28.8 � 3.57%), 32 (35.3 � 1.48 v. 57.6 � 3.33%), 36 (54.8 � 1.76 v. 67.4 � 2.81%), 40 (63.3 � 1.82 v. 72.0 � 2.54%), and 48 (70.6 � 1.78 v. 77.1 � 2.18%) hpi, respectively (mean � SEM; P d 0.05). However, the blastocyst yields on Day 6 (17.1 � 3.11 v. 16.4 � 2.11%), 7 (30.6 � 4.10 v. 34.6 � 3.51%), or 8 (34.1 � 3.90 v. 39.4 � 4.26%) were similar for both groups (mean � SEM; 16 v. 24 h, respectively). Significantly more 2-cell early cleaved embryos (up to 32 hpi) were male compared with the expected 1:1 ratio from both groups (16 h: 1.24:0.76 v. 24 h: 1.17:0.83, P ≤ 0.05); however, the overall sex ratio among 2-cell embryos was significantly different from the expected 1:1 in favor of males only for the 16-h group (1.18:0.82, P ≤ 0.05). The sex ratio of blastocysts on Day 6, 7, or 8 from both groups was not different from the expected 1:1. However, the total number of male blastocysts obtained after 8 days of culture from the 24-h group was significantly different from the expected 1:1 (1.19:0.81, P ≤ 0.05) and approached significance in the 16-h group. These results show that the maturational stage of the oocyte at the time of fertilization has an effect on the kinetics of early cleavage divisions but not on blastocyst yield. Furthermore, irrespective of the duration of maturation, the sex ratio of early-cleaving 2-cell embryos was weighted in favor of males, and this observation was maintained at the blastocyst stage.


2020 ◽  
Vol 21 (2) ◽  
pp. 599 ◽  
Author(s):  
Martina Höckner ◽  
Claudio Adriano Piechnik ◽  
Birgit Fiechtner ◽  
Birgit Weinberger ◽  
Lars Tomanek

The heavy metal cadmium (Cd) is known to modulate the immune system, challenging soil-dwelling organisms where environmental Cd pollution is high. Since earthworms lack adaptive immunity, we determined Cd-related effects on coelomocytes, the cellular part of innate immunity, which is also the site of detoxification processes. A proteomics approach revealed a set of immunity-related proteins as well as gene products involved in energy metabolism changing in earthworms in response to Cd exposure. Based on these results, we conducted extracellular flux measurements of oxygen and acidification to reveal the effect of Cd on coelomocyte metabolism. We observed a significantly changing oxygen consumption rate, extracellular acidification, as well as metabolic potential, which can be defined as the response to an induced energy demand. Acute changes in intracellular calcium levels were also observed, indicating impaired coelomocyte activation. Lysosomes, the cell protein recycling center, and mitochondrial parameters did not change. Taken together, we were able to characterize coelomocyte metabolism to reveal a potential link to an impaired immune system upon Cd exposure.


1999 ◽  
Vol 1999 ◽  
pp. 2-2 ◽  
Author(s):  
M. Kuran ◽  
M.E. Staines ◽  
G.J. McCallum ◽  
A.G. Onal ◽  
T.G. McEvoy

Ovine embryos produced in synthetic oviduct fluid (SOF) medium or in coculture with granulosa cell monolayers supplemented with low (A; 120 μmol/l) and high (B; 190 μmol/l) ammonia-producing steer sera caused different degrees of fetal oversize (Carolan et al., 1998). The objective of the present study was to determine whether the effects on fetal growth induced by these sera were associated with alterations in early embryo development.A total of 911 bovine oocytes, used in 8 replicates to test the effect of three culture treatments on embryo development, were matured and fertilized in vitro (IVF= Day 0). Presumptive zygotes were allocated on Day 1 to culture in SOF supplemented with 10% v/v steer serum (SOF+A, n=308; SOF+B, n=302) or with amino acids plus 0.4% w/v crystalline BSA (SOFaaBSA, n=301). All cultures were in 20 μl droplets under oil (38.5°C; 5% CO2, 5% O2; 4 zygotes per drop) and droplets were renewed every 48 h. Cleavage rate was recorded on Day 3. On Days 7 and 8, blastocyst yields, grade 1 and 2 blastocysts, their cell numbers (by staining with Hoechst 33342) and their stage and diameter were determined.


Sign in / Sign up

Export Citation Format

Share Document