The immune system, apoptosis and apoptosis-related proteins in human ovarian tumors (A review)

Author(s):  
I. Zusman ◽  
P. Gurevich ◽  
E. Gurevich ◽  
H. Ben-Hur
2019 ◽  
Vol 101 (5) ◽  
pp. 893-905 ◽  
Author(s):  
Katrin Gegenfurtner ◽  
Thomas Fröhlich ◽  
Miwako Kösters ◽  
Pascal Mermillod ◽  
Yann Locatelli ◽  
...  

Abstract The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.


2020 ◽  
Vol 21 (2) ◽  
pp. 599 ◽  
Author(s):  
Martina Höckner ◽  
Claudio Adriano Piechnik ◽  
Birgit Fiechtner ◽  
Birgit Weinberger ◽  
Lars Tomanek

The heavy metal cadmium (Cd) is known to modulate the immune system, challenging soil-dwelling organisms where environmental Cd pollution is high. Since earthworms lack adaptive immunity, we determined Cd-related effects on coelomocytes, the cellular part of innate immunity, which is also the site of detoxification processes. A proteomics approach revealed a set of immunity-related proteins as well as gene products involved in energy metabolism changing in earthworms in response to Cd exposure. Based on these results, we conducted extracellular flux measurements of oxygen and acidification to reveal the effect of Cd on coelomocyte metabolism. We observed a significantly changing oxygen consumption rate, extracellular acidification, as well as metabolic potential, which can be defined as the response to an induced energy demand. Acute changes in intracellular calcium levels were also observed, indicating impaired coelomocyte activation. Lysosomes, the cell protein recycling center, and mitochondrial parameters did not change. Taken together, we were able to characterize coelomocyte metabolism to reveal a potential link to an impaired immune system upon Cd exposure.


2005 ◽  
Vol 110 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Steven E. Williams ◽  
Thomas I. Brown ◽  
Ali Roghanian ◽  
Jean-Michel Sallenave

Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.


2018 ◽  
Vol 7 (3) ◽  
pp. 26 ◽  
Author(s):  
Gabina Calderón-Rosete ◽  
Juan González-Barrios ◽  
Manuel Lara-Lozano ◽  
Celia Piña-Leyva ◽  
Leonardo Rodríguez-Sosa

The freshwater crayfish Procambarus clarkii is an animal model employed for physiological and immunological studies and is also of great economic importance in aquaculture. Although it is a species of easy husbandry, a high percentage of its production is lost annually as a result of infectious diseases. Currently, genetic information about the immune system of crustaceans is limited. Therefore, we used the abdominal nerve cord from P. clarkii to obtain its transcriptome using Next Generation Sequencing (NGS) to identify proteins that participate in the immune system. The reads were assembled de novo and consensus sequences with more than 3000 nucleotides were selected for analysis. The transcripts of the sequences of RNA were edited for annotation and sent to the GenBank database of the National Center for Biotechnology Information (NCBI). We made a list of accession numbers of the sequences which were organized by the putative role of the immune system pathway in which they participate. In this work, we report on 80 proteins identified from the transcriptome of crayfish related to the immune system, 74 of them being the first reported for P. clarkii. We hope that the knowledge of these sequences will contribute significantly to the development of future studies of the immune system in crustaceans.


Author(s):  
Stepan S. Denisov ◽  
Ingrid Dijkgraaf

To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.


2000 ◽  
Vol 68 (3) ◽  
pp. 1319-1327 ◽  
Author(s):  
Shian Ying Sung ◽  
John V. McDowell ◽  
Jason A. Carlyon ◽  
Richard T. Marconi

ABSTRACT The ospE gene family of the Lyme disease spirochetes encodes a polymorphic group of immunogenic lipoproteins. The ospE genes are one of several gene families that are flanked by a highly conserved upstream sequence called the upstream homology box, or UHB, element. Earlier analyses in our lab demonstrated that ospE-related genes are characterized by defined hypervariable domains (domains 1 and 2) that are predicted to be hydrophilic, surface exposed, and antigenic. The flanking of hypervariable domain 1 by DNA repeats may indicate that recombination contributes to ospE diversity and thus ultimately to antigenic variation. Using an isogeneic clone of Borrelia burgdorferi B31G (designated B31Gc1), we demonstrate that theospE-related genes undergo mutation and rearrangement during infection in mice. The mutations that develop during infection resulted in the generation of OspE proteins with altered antigenic characteristics. The data support the hypothesized role of OspE-related proteins in immune system evasion.


2015 ◽  
Vol 16 (10) ◽  
pp. 1014-1024 ◽  
Author(s):  
Shusaku T Shibutani ◽  
Tatsuya Saitoh ◽  
Heike Nowag ◽  
Christian Münz ◽  
Tamotsu Yoshimori

2005 ◽  
Vol 22 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Sham V. Nair ◽  
Heather Del Valle ◽  
Paul S. Gross ◽  
David P. Terwilliger ◽  
L. Courtney Smith

The purple sea urchin, Strongylocentrotus purpuratus, is a member of the phylum Echinodermata, which is basal to the phylum Chordata within the deuterostome lineage of the animal kingdom. This relationship makes the analysis of the sea urchin immune system relevant to understanding the evolution of the deuterostome immune system leading to the Vertebrata. Subtractive suppression hybridization was employed to generate cDNA probes for screening high-density arrayed, conventional cDNA libraries to identify genes that were upregulated in coelomocytes responding to lipopolysaccharide. Results from 1,247 expressed sequence tags (ESTs) were used to infer that coelomocytes upregulated genes involved in RNA splicing, protein processing and targeting, secretion, endosomal activities, cell signaling, and alterations to the cytoskeletal architecture including interactions with the extracellular matrix. Of particular note was a set of transcripts represented by 60% of the ESTs analyzed, which encoded a previously uncharacterized family of closely related proteins, provisionally designated as 185/333. These transcripts exhibited a significant level of variation in their nucleotide sequence and evidence of putative alternative splicing that could yield up to 15 translatable elements. On the basis of the striking increase in gene expression in response to lipopolysaccharide and the unexpected level of diversity of the 185/333 messages, we propose that this set of transcripts encodes a family of putative immune response proteins that may represent a major component of an immunological response to bacterial challenge.


Sign in / Sign up

Export Citation Format

Share Document