scholarly journals 632 Analysing Laser Doppler Images - A Modified Approach to the Assessment of Burn Depth

2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
S Shahid

Abstract Aim To establish a method of quantifiably determining burn depth from Laser Doppler (LD) images of burns. Method NICE advises for LD scanning to be utilised for the assessment of intermediate depth burns, where there is doubt about burn depth following experienced clinician examination. However, these scan images do not provide a quantifiable measure of burn depth. LD determines burn perfusion, with deeper burns appear blue, and superficial burns appearing red. We retrospectively studied LD images from 110 patients over the course of 2019. Using Adobe Photoshop, Histogram software, we highlighted the burns using the selection tool, and determined the proportion of the burn that was deep/poorly perfused. We then correlated these results with time till recovery. Results Burns with a poorly perfused region of larger than 20%, had a proportional increase in time till full recovery. This proportional increase was also reflected in burns with a 30% and 40% poor perfusion. Burns with less than 20% of poor perfusion were found to recover at the same rate as superficial burns. This novel method for the measurement of burn depth will allow for the examining plastic surgeon to make a decision on treatment based on concrete and quantifiable burn depth data. Conclusions We have demonstrated the initial validity of a novel method for the quantifiable measurement of burn depth. Further study is required, to establish the validity of this novel approach to the quantifiable detection of burn depth.

Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


2018 ◽  
Vol 123 (1259) ◽  
pp. 79-92
Author(s):  
A. Kumar ◽  
A. K. Ghosh

ABSTRACTIn this paper, a Gaussian process regression (GPR)-based novel method is proposed for non-linear aerodynamic modelling of the aircraft using flight data. This data-driven regression approach uses the kernel-based probabilistic model to predict the non-linearity. The efficacy of this method is examined and validated by estimating force and moment coefficients using research aircraft flight data. Estimated coefficients of aerodynamic force and moment using GPR method are compared with the estimated coefficients using maximum-likelihood estimation (MLE) method. Estimated coefficients from the GPR method are statistically analysed and found to be at par with estimated coefficients from MLE, which is popularly used as a conventional method. GPR approach does not require to solve the complex equations of motion. GPR further can be directed for the generalised applications in the area of aeroelasticity, load estimation, and optimisation.


2016 ◽  
Vol 81 (10) ◽  
pp. 1111-1119 ◽  
Author(s):  
Fatemeh Bagheri ◽  
Abolfazl Olyaei

A novel method was developed for synthesizing a series of new three dentate Schiff base ligands starting from hydroxynaphthalidene pyrimidinyl amines with o-phenylenediamines or o-aminophenol or 2-amino-3-hydroxy-pyri-dine in the presence of formic acid catalyst under solvent-free conditions. In these reactions [1+1] condensation product as half-unit ligand was obtained. Moreover, the reaction of hydroxynaphthalidene pyrimidinyl amines with 3,4-diamino-pyridine and 1,8-naphthalenediamine lead to the formation of C2-naphthylated imidazopyridine and dihydropyrimidine, respectively. The attractive features of this protocol are: use of inexpensive catalyst, operationally simple, short reaction times, easy handling, and good yields.


2020 ◽  
Vol 8 (6) ◽  
pp. 5820-5825

Human computer interaction is a fast growing area of research where in the physiological signals are used to identify human emotion states. Identifying emotion states can be done using various approaches. One such approach which gained interest of research is through physiological signals using EEG. In the present work, a novel approach is proposed to elicit emotion states using 3-D Video-audio stimuli. Around 66 subjects were involved during data acquisition using 32 channel Enobio device. FIR filter is used to preprocess the acquired raw EEG signals. The desired frequency bands like alpha, delta, beta and theta are extracted using 8-level DWT. The statistical features, Hurst exponential, entropy, power, energy, differential entropy of each bands are computed. Artificial Neural network is implemented using Sequential Keras model and applied on the extracted features to classify in to four classes (HVLA, HVHA, LVHA and LVLA) and eight discrete emotion states like clam, relax, happy, joy, sad, fear, tensed and bored. The performance of ANN classifier found to perform better for 4- classes than 8-classes with a classification rate of 90.835% and 74.0446% respectively. The proposed model achieved better performance rate in detecting discrete emotion states. This model can be used to build applications on health like stress / depression detection and on entertainment to build emotional DJ.


Author(s):  
A. Brook ◽  
E. Ben Dor

A novel approach for radiometric calibration and atmospheric correction of airborne hyperspectral (HRS) data, termed supervised vicarious calibration (SVC) was proposed by Brook and Ben-Dor in 2010. The present study was aimed at validating this SVC approach by simultaneously using several different airborne HSR sensors that acquired HSR data over several selected sites at the same time. The general goal of this study was to apply a cross-calibration approach to examine the capability and stability of the SVC method and to examine its validity. This paper reports the result of the multi sensors campaign took place over Salon de Provenance, France on behalf of the ValCalHyp project took place in 2011. The SVC method enabled the rectification of the radiometric drift of each sensor and improves their performance significantly. The flight direction of the SVC targets was found to be a critical issue for such correction and recommendations have been set for future utilization of this novel method. The results of the SVC method were examined by comparing ground-truth spectra of several selected validation targets with the image spectra as well as by comparing the classified water quality images generated from all sensors over selected water bodies.


Burns ◽  
2007 ◽  
Vol 33 (7) ◽  
pp. 833-842 ◽  
Author(s):  
D.J. McGill ◽  
K. Sørensen ◽  
I.R. MacKay ◽  
I. Taggart ◽  
S.B. Watson

2020 ◽  
pp. 1085-1114
Author(s):  
Youngseok Choi ◽  
Jungsuk Oh ◽  
Jinsoo Park

This research proposes a novel method of measuring the dynamics of semantic relatedness. Research on semantic relatedness has a long history in the fields of computational linguistics, psychology, computer science, as well as information systems. Computing semantic relatedness has played a critical role in various situations, such as data integration and keyword recommendation. Many researchers have tried to propose more sophisticated techniques to measure semantic relatedness. However, little research has considered the change of semantic relatedness with the flow of time and occurrence of events. The authors' proposed method is validated by actual corpus data collected from a particular context over a specific period of time. They test the feasibility of our proposed method by constructing semantic networks by using the corpus collected during a different period of time. The experiment results show that our method can detect and manage the changes in semantic relatedness between concepts. Based on the results, the authors discuss the need for a dynamic semantic relatedness paradigm.


RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 30813-30824 ◽  
Author(s):  
Areej K. Al-Jwaid ◽  
Dmitriy Berillo ◽  
Irina N. Savina ◽  
Andrew B. Cundy ◽  
Jonathan L. Caplin

A novel method of crosslinking live bacteria into a stable 3D porous structure and its subsequent use in phenol degradation is reported.


Author(s):  
Hodjat Pendar ◽  
Maryam Mahnama ◽  
Hassan Zohoor

A parallel manipulator is a closed loop mechanism in which a moving platform is connected to the base by at least two serial kinematic chains. The main problem engaged in these mechanisms, is their restricted working space as a result of singularities. In order to tackle these problems, many methods have been introduced by scholars. However, most of the mentioned methods are too much time consuming and need a great amount of computations. They also in most cases do not provide a good insight to the existence of singularity for the designer. In this paper a novel approach is introduced and utilized to identify singularities in parallel manipulators. By applying the new method, one could get a better understanding of geometrical interpretation of singularities in parallel mechanisms. Here we have introduced the Constraint Plane Method (CPM) and some of its applications in parallel mechanisms. The main technique used here, is based on Ceva Theorem.


2016 ◽  
Vol 27 (2) ◽  
pp. 1-26 ◽  
Author(s):  
Youngseok Choi ◽  
Jungsuk Oh ◽  
Jinsoo Park

This research proposes a novel method of measuring the dynamics of semantic relatedness. Research on semantic relatedness has a long history in the fields of computational linguistics, psychology, computer science, as well as information systems. Computing semantic relatedness has played a critical role in various situations, such as data integration and keyword recommendation. Many researchers have tried to propose more sophisticated techniques to measure semantic relatedness. However, little research has considered the change of semantic relatedness with the flow of time and occurrence of events. The authors' proposed method is validated by actual corpus data collected from a particular context over a specific period of time. They test the feasibility of our proposed method by constructing semantic networks by using the corpus collected during a different period of time. The experiment results show that our method can detect and manage the changes in semantic relatedness between concepts. Based on the results, the authors discuss the need for a dynamic semantic relatedness paradigm.


Sign in / Sign up

Export Citation Format

Share Document