scholarly journals Insights into the ancestral flowers of Ranunculales

2020 ◽  
Vol 194 (1) ◽  
pp. 23-46 ◽  
Author(s):  
Laetitia Carrive ◽  
Boris Domenech ◽  
Hervé Sauquet ◽  
Florian Jabbour ◽  
Catherine Damerval ◽  
...  

Abstract The question of the origin of petals has long been debated in the botanical literature. Ranunculales are characterized by a spectacular floral diversity, particularly at the perianth level. Recent progress in understanding the genetic bases of floral organ identity suggests a single origin for petals in Ranunculaceae, contrasting with the traditional morphological hypothesis of repeated evolution. However, perianth evolution at the ordinal level remains incompletely understood. Recent advances in the elucidation of phylogenetic relationships in the order now provide a new opportunity to study character evolution with model-based methods. We used ancestral state reconstruction methods that take into account various sources of uncertainty to reconstruct the evolution of floral traits at the scale of Ranunculales using a consensus phylogenetic framework of 144 terminal species representing all families in the order. Ancestrally, Ranunculales probably had three trimerous whorls of perianth organs differentiated into two categories of petaloid organs differing in their shape. Each whorl was further lost or duplicated. Moreover, our results support the hypothesis of a single origin of highly specialized (elaborate) nectariferous petals in Ranunculaceae.

2006 ◽  
Vol 6 ◽  
pp. 1933-1944 ◽  
Author(s):  
Wen-Chieh Tsai ◽  
Hong-Hwa Chen

Orchids are known for both their floral diversity and ecological strategies. The versatility and specialization in orchid floral morphology, structure, and physiological properties have fascinated botanists for centuries. In floral studies, MADS-box genes contributing to the now famous ABCDE model of floral organ identity control have dominated conceptual thinking. The sophisticated orchid floral organization offers an opportunity to discover new variant genes and different levels of complexity to the ABCDE model. Recently, several remarkable research studies done on orchid MADS-box genes have revealed the important roles on orchid floral development. Knowledge about MADS-box genes’' encoding ABCDE functions in orchids will give insights into the highly evolved floral morphogenetic networks of orchids.


2006 ◽  
Vol 6 ◽  
pp. 1923-1932 ◽  
Author(s):  
Takahiro Yamaguchi ◽  
Hiro-Yuki Hirano

MADS-box genes play critical roles in a number of developmental processes in flowering plants, such as specification of floral organ identity, control of flowering time, and regulation of fruit development. Because of their crucial functions in flower development, diversification of the MADS-box gene family has been suggested to be a major factor responsible for floral diversity during radiation of the flowering plants. Inflorescences and flowers in the grass species have unique structures that are distinct from those in eudicots. Thus, it is plausible that the diversification of the function of MADS-box genes may have been a key driving force in the morphological divergence of the flowers and inflorescences in the grasses. Indeed, recent progress in genetic studies has shown that MADS-box genes function in flower development inOryza sativa(rice), in support of the idea that functional diversification of the MADS-box genes was involved in evolution of the angiosperms. In this review, we summarize the functions of the major subfamilies of the MADS-box genes in rice and discuss their role in the development and evolution of rice flowers and inflorescences.


2017 ◽  
Vol 29 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Philip Ruelens ◽  
Zhicheng Zhang ◽  
Hilda van Mourik ◽  
Steven Maere ◽  
Kerstin Kaufmann ◽  
...  

Planta ◽  
2003 ◽  
Vol 217 (6) ◽  
pp. 904-911 ◽  
Author(s):  
Sichul Lee ◽  
Jong-Seong Jeon ◽  
Kyungsook An ◽  
Yong-Hwan Moon ◽  
Sanghee Lee ◽  
...  

2020 ◽  
Author(s):  
Chunling Zhang ◽  
Yalin Sun ◽  
Ludan Wei ◽  
Wenjing Wang ◽  
Hang Li ◽  
...  

Abstract Background: Members of AP1/FUL subfamily genes play an essential role in the regulation of floral meristem transition, floral organ identity, and fruit ripping. At present, there have been insufficient studies to explain the function of the AP1/FUL-like subfamily genes in Asteraceae. Results: Here, we cloned two euAP1 clade genes TeAP1-1 and TeAP1-2, and three euFUL clade genes TeFUL1, TeFUL2, and TeFUL3 from marigold (Tagetes erecta). Expression profile analysis demonstrated that TeAP1-1 and TeAP1-2 were mainly expressed in receptacles, sepals, petals, and ovules. TeFUL1 and TeFUL3 were expressed in floral buds, stems and leaves as well as in productive tissues, while TeFUL2 was mainly expressed in floral buds and vegetative tissues. Transgenic Arabidopsis lines showed that overexpression TeAP1-2 or TeFUL2 resulted in early flowering, implying that these two genes might regulate the floral transition. Yeast two-hybrid analysis indicated that TeAP1/FUL proteins only interacted with TeSEP proteins to form heterodimers, and that TeFUL2 could also form a homodimer.Conclusion: In general, TeAP1-1 and TeAP1-2 might play a conserved role in regulating sepal and petal identity, just like the role of MADS-box class A genes, while TeFUL genes might display divergent functions. This study provides an insight into molecular mechanism of AP1/FUL-like genes in Asteraceae species.


2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1641-1650 ◽  
Author(s):  
Kenneth M Olsen ◽  
Andrew Womack ◽  
Ashley R Garrett ◽  
Jane I Suddith ◽  
Michael D Purugganan

AbstractThe floral developmental pathway in Arabidopsis thaliana is composed of several interacting regulatory genes, including the inflorescence architecture gene TERMINAL FLOWER1 (TFL1), the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER (CAL), and the floral organ identity genes APETALA3 (AP3) and PISTILLATA (PI). Molecular population genetic analyses of these different genes indicate that the coding regions of AP3 and PI, as well as AP1 and CAL, share similar levels and patterns of nucleotide diversity. In contrast, the coding regions of TFL1 and LFY display a significant reduction in nucleotide variation, suggesting that these sequences have been subjected to a recent adaptive sweep. Moreover, the promoter of TFL1, unlike its coding region, displays high levels of diversity organized into two distinct haplogroups that appear to be maintained by selection. These results suggest that patterns of molecular evoution differ among regulatory genes in this developmental pathway, with the earlier acting genes exhibiting evidence of adaptive evolution.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1767
Author(s):  
Annemarie Heiduk ◽  
Dewi Pramanik ◽  
Marlies Spaans ◽  
Loes Gast ◽  
Nemi Dorst ◽  
...  

Deceptive Ceropegia pitfall flowers are an outstanding example of synorganized morphological complexity. Floral organs functionally synergise to trap fly-pollinators inside the fused corolla. Successful pollination requires precise positioning of flies headfirst into cavities at the gynostegium. These cavities are formed by the corona, a specialized organ of corolline and/or staminal origin. The interplay of floral organs to achieve pollination is well studied but their evolutionary origin is still unclear. We aimed to obtain more insight in the homology of the corona and therefore investigated floral anatomy, ontogeny, vascularization, and differential MADS-box gene expression in Ceropegia sandersonii using X-ray microtomography, Light and Scanning Electronic Microscopy, and RT-PCR. During 10 defined developmental phases, the corona appears in phase 7 at the base of the stamens and was not found to be vascularized. A floral reference transcriptome was generated and 14 MADS-box gene homologs, representing all major MADS-box gene classes, were identified. B- and C-class gene expression was found in mature coronas. Our results indicate staminal origin of the corona, and we propose a first ABCDE-model for floral organ identity in Ceropegia to lay the foundation for a better understanding of the molecular background of pitfall flower evolution in Apocynaceae.


Sign in / Sign up

Export Citation Format

Share Document