Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: a biosystematic and molecular phylogenetic approach

Author(s):  
Bruna Ladeira Lau ◽  
João Aguiar Nogueira Batista ◽  
Antônio Massensini Junior ◽  
W Mark Whitten ◽  
Eduardo Leite Borba

Abstract Habenaria repens (Orchidaceae) represents a species complex distributed from the southern USA to northern Argentina, including several morphological variants, here referred to as morphotypes. To investigate and clarify the morphological and genetic relationships between these morphotypes and resolve the taxonomy of the complex, we applied a biosystematic multi-population approach using molecular phylogenetic, morphometric and population genetics analyses in the group. We sampled 31 (phylogenetic analyses) and 20 (morphometric and microsatellite analyses) populations of Habenaria aranifera and H. repens from Brazil and the USA, including six morphotypes of H. repens. Bayesian and maximum parsimony phylogenetic analyses of nuclear ribosomal (ITS and ETS) and plastid (matK, trnK and rps16-trnK) markers revealed that the complex is polyphyletic, subdivided into three distantly related clades. Population genetic analyses using microsatellites showed a remarkably similar structure to the phylogenetic analyses, but both were different from the morphometric analyses of floral characters, indicating cases of diversification and convergence, probably due to pollination processes. Habenaria aranifera is embedded in a paraphyletic and polymorphic H. repens with a broad geographical distribution and other attributes of an ochlospecies, probably constituting a progenitor–derivative pair. Our results support the recognition of H. aranifera, H. repens and three or four new species.

2020 ◽  
Vol 89 (2) ◽  
pp. 188-209
Author(s):  
Yutaro Oku ◽  
Kenji Iwao ◽  
Bert W. Hoeksema ◽  
Naoko Dewa ◽  
Hiroyuki Tachikawa ◽  
...  

Recent molecular phylogenetic analyses of scleractinian corals have resulted in the discovery of cryptic lineages. To understand species diversity in corals, these lineages need to be taxonomically defined. In the present study, we report the discovery of a distinct lineage obscured by the traditional morphological variation of Fungia fungites. This taxon exists as two distinct morphs: attached and unattached. Molecular phylogenetic analyses using mitochondrial COI and nuclear ITS markers as well as morphological comparisons were performed to clarify their phylogenetic relationships and taxonomic positions. Molecular data revealed that F. fungites consists of two genetically distinct clades (A and B). Clade A is sister to a lineage including Danafungia scruposa and Halomitra pileus, while clade B formed an independent lineage genetically distant from these three species. The two morphs were also found to be included in both clades, although the attached morph was predominantly found in clade A. Morphologically, both clades were statistically different in density of septal dentation, septal number, and septal teeth shape. These results indicate that F. fungites as presently recognized is actually a species complex including at least two species. After checking type specimens, we conclude that specimens in clade A represent true F. fungites with two morphs (unattached and attached) and that all of those in clade B represent an unknown species and genus comprising an unattached morph with only one exception. These findings suggest that more unrecognized taxa with hitherto unnoticed morphological differences can be present among scleractinian corals.


MycoKeys ◽  
2021 ◽  
Vol 85 ◽  
pp. 57-71
Author(s):  
Taichang Mu ◽  
Zhaoxue Zhang ◽  
Rongyu Liu ◽  
Shubin Liu ◽  
Zhuang Li ◽  
...  

Colletotrichum has numerous host range and distribution. Its species are important plant pathogens, endophytes and saprobes. Colletotrichum can cause regular or irregular depressions and necrotic lesions in the epidermal tissues of plants. During this research Colletotrichum specimens were collected from Mengyin County, Shandong Province, China. A multi-locus phylogenetic analysis of ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS sequence data combined with morphology, revealed a new species and two known species, viz. C. mengyinense sp. nov., C. gloeosporioides and C. pandanicola, belonging to the C. gloeosporioides species complex. The new species is described and illustrated in this paper and compared with taxa in the C. gloeosporioides species complex.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Hernán Darío Suárez ◽  
Camila Robayo ◽  
Xavier Marquínez ◽  
Lauren Raz

Introducction: Gaiadendron punctatum is a hemiparasitic species of Loranthaceae (Tribe Gaiadendreae) that is widely distributed in mountainous regions of Central and South America. Embryological and phylogenetic studies in the family indicate a trend towards reduction of the gynoecium and ovules, the morphology of which supports the current circumscription of Tribe Gaiadendreae (Gaiadendron and Atkinsonia). Molecular phylogenetic studies suggest that Nuytsia, Atkinsonia and Gaiadendron diverged successively, forming a grade at the base of the Loranthaceae, but support values are low. Objetive: In the present study, the floral anatomy of Gaiadendron punctatum was investigated in order to provide additional data to permit comparisons among the three basal-most genera in the Loranthaceae and reevaluate their relationships. Methods: Flowers of G. punctatum were collected at different developmental stages and serial sections were prepared and analyzed by light microscopy. Results: Inflorescence development is acropetal; the flowers are bisexual with an inferior ovary surmounted by a calyculus, a ring-shaped structure lacking vascular tissue; the ovary is comprised of seven basal locules, each with an ategmic, tenuinucellate ovule. Above the locules is a mamelon that is fused with the adjacent tissues. The androecium is comprised of seven epipetalous stamens, the anthers with fibrous endothecium dehiscence through a single longitudinal slit, releasing tricolpated pollen. Conclusions: The results of this study show that Gaiadendron and Atkinsonia share versatile, dorsifixed anthers, while Gaiadendron and Nuytsia share the same mode of anther dehiscence. On the other hand, Gaiadendron shares with members of Tribe Elytrantheae an amyliferous mamelon and an unvascularized calyculus. Combined phylogenetic analyses of morphological and molecular data are desirable to determine whether Tribe Gaiadendreae comprises a clade, a grade or if the two genera are more distantly related.


2021 ◽  
Vol 60 (1) ◽  
pp. 37-49
Author(s):  
Diána SERESS ◽  
Gábor M. KOVÁCS ◽  
Orsolya MOLNÁR ◽  
Márk Z. NÉMETH

Papaya (Carica papaya L.) is an important fruit crop in many tropical and subtropical countries. Powdery mildew commonly affects this host, causing premature leaf loss, reduced yields and poor fruit quality. At least fifteen different fungi have been identified as the causal agents of papaya powdery mildew. Powdery mildew symptoms were detected on potted papaya plants growing in two locations in Hungary. This study aimed to identify the causal agents. Morphology of powdery mildew samples was examined, and sequences of two loci were used for molecular taxonomic identifications. Only anamophs were detected in all samples, and four morphological types were distinguished. Most samples had Pseudoidium anamorphs, while some were of the Fibroidium anamorph. Based on morphology and molecular taxonomy, the Fibroidium anamorph  was identified as Podosphaera xanthii. The Pseudoidium anamorphs corresponded to three different Erysiphe species: E. cruciferarum, E. necator and an unidentified Erysiphe sp., for which molecular phylogenetic analyses showed it belonged to an unresolved species complex of E. malvae, E. heraclei and E. betae. Infectivity of P. xanthii and E. necator on papaya was verified with cross inoculations. A review of previous records of powdery mildew fungi infecting papaya is also provided. Podosphaera xanthii was known to infect, and E. cruciferarum was suspected to infect Carica papaya, while E. necator was recorded on this host only once previously. No powdery mildew fungus belonging to the E. malvae/E. heraclei/E. betae species complex is known to infect papaya or any other plants in the Caricaceae, so the unidentified Erysiphe sp. is a new record on papaya and the Caricaceae. This study indicates host range expansion of this powdery mildew fungus onto papaya.


MycoKeys ◽  
2019 ◽  
Vol 54 ◽  
pp. 77-98 ◽  
Author(s):  
Meng Zhou ◽  
Li Wang ◽  
Tom W. May ◽  
Josef Vlasák ◽  
Jia-Jia Chen ◽  
...  

Four species of Haploporus, H.angustisporus, H.crassus, H.gilbertsonii and H.microsporus are described as new and H.pirongia is proposed as a new combination, based on morphological characteristics and molecular phylogenetic analyses inferred from internal transcribed spacer (ITS) and large subunit nuclear ribosomal RNA gene (nLSU) sequences. Haploporusangustisporus, H.crassus and H.microsporus occur in China, H.gilbertsonii occurs in the USA, and the distribution of H.pirongia is extended from New Zealand to Australia. Haploporusangustisporus is characterized by the distinct narrow oblong basidiospores measuring 10.5–13.5 × 3.9–5 µm. Haploporuscrassus is characterized by the presence of ventricose cystidioles occasionally with a simple septum, dissepimental hyphae usually with a simple septum, unique thick-walled basidia and distinctly wide oblong basidiospores measuring 13.5–16.5 × 7.5–9.5 µm. Haploporusgilbertsonii is characterized by its large pores (2–3 per mm), a dimitic hyphal structure with non-dextrinoid skeletal hyphae and wide oblong basidiospores measuring 12–15 × 6–8 µm. Haploporusmicrosporus is characterized by distinctly small pores (7–9 per mm), the presence of dendrohyphidia, and distinctly small ellipsoid basidiospores measuring 5.3–6.7 × 3–4.1 µm. Haploporuspirongia is proposed as a new combination. Haploporusamarus is shown to be a synonym of H.odorus and Pachykytosporawasseri is considered a synonym of H.subtrameteus.


2020 ◽  
Vol 6 (1) ◽  
pp. 38-52 ◽  
Author(s):  
M. Hoffmeister ◽  
S. Ashrafi ◽  
M. Thines ◽  
W. Maier

The downy mildew species parasitic to Mentheae are of particular interest, as this tribe of Lamiaceae contains a variety of important medicinal plants and culinary herbs. Over the past two decades, two pathogens, Peronospora belbahrii and Pe. salviae-officinalis have spread globally, impacting basil and common sage production, respectively. In the original circumscription of Pe. belbahrii, the downy mildew of coleus (Plectranthus scutellarioides) was ascribed to this species in the broader sense, but subtle differences in morphological and molecular phylogenetic analyses using two genes suggested that this pathogen would potentially need to be assigned to a species of its own. In the present study, Peronospora species causing downy mildew on members of the Mentheae, including clary sage (Salvia sclarea), meadow sage (S. pratensis), basil (Ocimum basilicum), ground ivy (Glechoma hederacea) and coleus (Plectranthus scutellarioides) were studied using light microscopy and molecular phylogenetic analyses based on six loci (ITS rDNA, cox 1, cox 2, ef1a, hsp 90 and β-tubulin) to clarify the species boundaries in the Pe. belbahrii species complex. The downy mildew on Salvia pratensis is shown to be distinct from Pe. salviae-officinalis and closely related to Pe. glechomae, and is herein described as a new species, Pe. salviae-pratensis. The downy mildew on S. sclarea was found to be caused by Pe. salviae-officinalis. This is of phytopathological importance, because meadow sage thus does not play a role as inoculum source for common sage in the natural habitat of the former in Europe and Asia, while clary sage probably does. The multi-gene phylogeny revealed that the causal agent of downy mildew on coleus is distinct from Pe. belbahrii on basil, and is herein described as a new taxon, Pe. choii.


2017 ◽  
Vol 30 (1) ◽  
pp. 1 ◽  
Author(s):  
E. M. Joyce ◽  
R. Butcher ◽  
M. Byrne ◽  
P. F. Grierson ◽  
M. Hankinson ◽  
...  

The Tetratheca hirsuta Lindl. species complex from south-west Western Australia is one of the last unresolved complexes in this Australian endemic genus, and comprises the highly variable T. hirsuta, two rare, phrase-named taxa, and the closely allied T. hispidissima Steetz. An integrative approach, incorporating multivariate morphometric analysis and molecular phylogenetic and phenetic analyses of nrDNA (ETS) and cpDNA (ndhF–trnL, rpl16, trnS–trnG5ʹ2S), was used to investigate taxonomic boundaries within the complex. Morphological data showed clear divergence within the complex, and allowed several taxonomically uncertain individuals to be assigned. Phenetic and phylogenetic analyses of ETS showed substantial congruence with morphology, indicating that the groups recognised through morphometric analyses are also genetically divergent. By comparison, the chloroplast regions yielded incongruent gene trees, perhaps owing to incomplete lineage sorting, hybridisation or slow evolution of cpDNA. The present results support the recognition of the following four taxa: a morphologically and geographically expanded T. hispidissima, which is highly divergent from the remainder of the complex, and a closer grouping of T. hirsuta subsp. boonanarring Joyce & R.Butcher subsp. nov., T. hirsuta subsp. viminea (Lindl.) Joyce comb. et stat. nov. and T. hirsuta subsp. hirsuta.


Phytotaxa ◽  
2015 ◽  
Vol 212 (3) ◽  
pp. 199 ◽  
Author(s):  
Yunpeng Zhao ◽  
Zhongshuai Sun ◽  
Yihan Wang ◽  
Chengxin Fu

The Smilax china complex (Smilacaceae) is a typical mixoploid species complex including five extant diploid taxa with a widespread distribution across eastern Asia. The diploid population (mHB, 2n = 32), which was originally considered to be diploid S. china, together with two newly discovered diploid populations (mZZ and mYXS) is supported here as a distinct species by morphological, karyotypic and molecular data. These three populations present consistent morphological characters of sub-erect stems, rudimentary tendrils and minutely serrulate leaf margins, in which they differ from S. china. Molecular phylogenetic analyses also confirm its monophyly with a closer relationship to the other two erect species S. biflora and S. trinervula in the complex. These three populations are thus proposed to be a clear new diploid species and described with the name of Smilax microdontus Z. S. Sun & C.X. Fu, sp. nov. The discovery of this new species highlights the importance of closer examinations on species complexes by integrating multiple evidence.


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1751-1765 ◽  
Author(s):  
A. ŠIMKOVÁ ◽  
M. PEČÍNKOVÁ ◽  
E. ŘEHULKOVÁ ◽  
M. VYSKOČILOVÁ ◽  
M. ONDRAČKOVÁ

SUMMARYThe aims of the study were (1) to describe the Dactylogyrus communities living on selected South European Barbus species, (2) to analyse morphometric variability of their attachment and reproductive organs, and (3) to perform molecular phylogenetic analyses, in order to investigate the mode of speciation in Dactylogyrus species parasitizing congeneric hosts. In Bulgaria, Dactylogyrus crivellius, D. dyki and D. petenyi were found on B. balcanicus, and D. dyki on B. cyclolepis. In Spain, Dactylogyrus carpathicus and D. dyki were detected on B. meridionalis. Morphometric analyses of D. dyki revealed significant differences in the attachment and reproductive organs when individuals from different Barbus species were compared. Two monophyletic groups were recognized from the molecular phylogenetic analyses: the first included D. carpathicus and D. crivellius which have large body size and anchors, with a weakly supported basal position of D. malleus from B. barbus; the second included D. dyki and D. petenyi which have small body and anchor sizes. The comparison of host and parasite phylogenies did not indicate the intrahost speciation. Intraspecific molecular variability was found between individuals of D. dyki and D. carpathicus from different Barbus species, suggesting the need for a taxonomic revision for these species.


Author(s):  
Alexander E. Fedosov ◽  
Peter Stahlschmidt ◽  
Nicolas Puillandre ◽  
Laetitia Aznar-Cormano ◽  
Philippe Bouchet

The small conoidean Hemilienardia ocellata is one of the easily recognizable Indo-Pacific “turrids”, primarily because of its remarkable eyespot colour pattern. Morphological and molecular phylogenetic analyses revealed four species that share this “characteristic” colour pattern but demonstrate consistent differences in size and shell proportions. Three new species – Hemilienardia acinonyx sp. nov. from the Philippines, H. lynx sp. nov. from Papua New Guinea and H. pardus sp. nov. from the Society and Loyalty Islands – are described based on the results of phylogenetic analyses. Although the H. ocellata species complex clade falls in a monophyletic Hemilienardia, H. ocellata and H. acinonyx sp. nov. possess a radula with semi-enrolled or notably flattened triangular marginal teeth, a condition that diverges substantially from the standard radular morphology of Hemilienardia and other raphitomids.


Sign in / Sign up

Export Citation Format

Share Document