EFFECTS OF AGEING ON LOCAL RATES OF CEREBRAL PROTEIN SYNTHESIS IN SPRAGUE-DAWLEY RATS

Brain ◽  
1985 ◽  
Vol 108 (1) ◽  
pp. 155-170 ◽  
Author(s):  
M.C. INGVAR ◽  
P. MAEDER ◽  
L. SOKOLOFF ◽  
C. B. SMITH
2000 ◽  
Vol 88 (3) ◽  
pp. 1036-1042 ◽  
Author(s):  
Peter A. Farrell ◽  
Jazmir M. Hernandez ◽  
Mark J. Fedele ◽  
Thomas C. Vary ◽  
Scot R. Kimball ◽  
...  

Translational control of protein synthesis depends on numerous eukaryotic initiation factors (eIFs) and we have previously shown ( Am. J. Physiol. Endocrinol. Metab. 276: E721–E727, 1999) that increases in one factor, eIF2B, are associated with increases in rates of protein synthesis after resistance exercise in rats. In the present study we investigated whether the eIF4E family of initiation factors is also involved with an anabolic response to exercise. Male Sprague-Dawley rats either remained sedentary ( n = 6) or performed acute resistance exercise ( n = 6), and rates of protein synthesis were assessed in vivo 16 h after the last session of resistance exercise. eIF4E complexed to eIF4G (eIF4E ⋅ eIF4G), eIF4E binding protein 1 (4E-BP1) complexed to eIF4E, and phosphorylation state of eIF4E and 4E-BP1 (γ-form) were assessed in gastrocnemius. Rates of protein synthesis were higher in exercised rats compared with sedentary rats [205 ± 8 (SE) vs. 164 ± 5.5 nmol phenylalanine incorporated ⋅ g muscle−1 ⋅ h−1, respectively; P < 0.05]. Arterial plasma insulin concentrations were not different between the two groups. A trend ( P = 0.09) for an increase in eIF4E ⋅ eIF4G with exercise was noted; however, no statistically significant differences were observed in any of the components of the eIF4E family in response to resistance exercise. These new data, along with our previous report on eIF2B, suggest that the regulation of peptide chain initiation after exercise is more dependent on eIF2B than on the eIF4E system.


2013 ◽  
Vol 304 (2) ◽  
pp. E229-E236 ◽  
Author(s):  
Andrew R. Kelleher ◽  
Scot R. Kimball ◽  
Michael D. Dennis ◽  
Rudolf J. Schilder ◽  
Leonard S. Jefferson

Limb immobilization, limb suspension, and bed rest cause substantial loss of skeletal muscle mass, a phenomenon termed disuse atrophy. To acquire new knowledge that will assist in the development of therapeutic strategies for minimizing disuse atrophy, the present study was undertaken with the aim of identifying molecular mechanisms that mediate control of protein synthesis and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Male Sprague-Dawley rats were subjected to unilateral hindlimb immobilization for 1, 2, 3, or 7 days or served as nonimmobilized controls. Following an overnight fast, rats received either saline or l-leucine by oral gavage as a nutrient stimulus. Hindlimb skeletal muscles were extracted 30 min postgavage and analyzed for the rate of protein synthesis, mRNA expression, phosphorylation state of key proteins in the mTORC1 signaling pathway, and mTORC1 signaling repressors. In the basal state, mTORC1 signaling and protein synthesis were repressed within 24 h in the soleus of an immobilized compared with a nonimmobilized hindlimb. These responses were accompanied by a concomitant induction in expression of the mTORC1 repressors regulated in development and DNA damage responses (REDD) 1/2. The nutrient stimulus produced an elevation of similar magnitude in mTORC1 signaling in both the immobilized and nonimmobilized muscle. In contrast, phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) on Thr229 and Thr389 in response to the nutrient stimulus was severely blunted. Phosphorylation of Thr229 by PDK1 is a prerequisite for phosphorylation of Thr389 by mTORC1, suggesting that signaling through PDK1 is impaired in response to immobilization. In conclusion, the results show an immobilization-induced attenuation of mTORC1 signaling mediated by induction of REDD1/2 and defective p70S6K1 phosphorylation.


2000 ◽  
Vol 88 (3) ◽  
pp. 1142-1149 ◽  
Author(s):  
Jazmir M. Hernandez ◽  
Mark J. Fedele ◽  
Peter A. Farrell

The temporal pattern for changes in rates of protein synthesis and glucose uptake after resistance exercise, especially relative to each other, is not known. Male Sprague-Dawley rats performed acute resistance exercise ( n = 7) or remained sedentary ( n = 7 per group), and the following were assessed in vivo 1, 3, 6, 12 and 24 h later: rates of protein synthesis, rates of glucose uptake, phosphatidylinositol 3-kinase (PI3-kinase) activity, and p70S6k activity. Rates of protein synthesis in mixed gastrocnemius muscle did not increase until 12 h after exercise (e.g., at 12 h, sedentary = 138 ± 4 vs. exercised = 178 ± 6 nmol phenylalanine incorporated ⋅ g muscle− 1 ⋅ h− 1, mean ± SE, P < 0.05), whereas at 6 h after exercise rates of glucose uptake were significantly elevated (sedentary = 0.18 ± 0.020 vs. exercised = 0.38 ± 0.024 μmol glucose 6-phosphate incorporated ⋅ kg muscle− 1 ⋅ min− 1, P < 0.05). At 24 h after exercise, rates of protein synthesis were still elevated, whereas glucose uptake had returned to basal levels. Arterial insulin concentrations were not different between groups at any time. Non-insulin-stimulated activities of PI3-kinase and p70S6k were higher at 6, 12, and 24 h after exercise ( P < 0.05), and, generally, these occurred when rates of protein synthesis (12 and 24 h) and glucose uptake were elevated (6 and 12 but not 24 h) by exercise. These data suggest that regulators of protein synthesis and glucose uptake may respond to the same contraction-generated signals with different kinetics or that they respond to different intra- or extracellular signals that are generated by exercise.


1993 ◽  
Vol 32 (3) ◽  
pp. 346-347
Author(s):  
Carlos Conill ◽  
Mireia Farriol ◽  
Simon Schwartz ◽  
Luis Salvador

2006 ◽  
Vol 290 (6) ◽  
pp. E1205-E1211 ◽  
Author(s):  
James D. Fluckey ◽  
Micheal Knox ◽  
Latasha Smith ◽  
Esther E. Dupont-Versteegden ◽  
Dana Gaddy ◽  
...  

Recent studies have implicated the mTOR-signaling pathway as a primary component for muscle growth in mammals. The purpose of this investigation was to examine signaling pathways for muscle protein synthesis after resistance exercise. Sprague-Dawley rats (male, 6 mo old) were assigned to either resistance exercise or control groups. Resistance exercise was accomplished in operantly conditioned animals using a specially designed flywheel apparatus. Rats performed two sessions of resistance exercise, separated by 48 h, each consisting of 2 sets of 25 repetitions. Sixteen hours after the second session, animals were killed, and soleus muscles were examined for rates of protein synthesis with and without insulin and/or rapamycin (mTOR inhibitor) and/or PD-098059 (PD; MEK kinase inhibitor). Results of this study demonstrated that rates of synthesis were higher ( P < 0.05) with insulin after exercise compared with without insulin, or to control muscles, regardless of insulin. Rapamycin lowered ( P < 0.05) rates of synthesis in controls, with or without insulin, and after exercise without insulin. However, insulin was able to overcome the inhibition of rapamycin after exercise ( P < 0.05). PD had no effect on protein synthesis in control rats, but the addition of PD to exercised muscle resulted in lower ( P < 0.05) rates of synthesis, and this inhibition was not rescued by insulin. Western blot analyses demonstrated that the inhibitors used in the present study were selective and effective for preventing activation of specific signaling proteins. Together, these results suggest that the insulin-facilitated increase of muscle protein synthesis after resistance exercise requires multiple signaling pathways.


2009 ◽  
Vol 297 (1) ◽  
pp. E252-E259 ◽  
Author(s):  
Heath G. Gasier ◽  
Steven E. Riechman ◽  
Michael P. Wiggs ◽  
Stephen F. Previs ◽  
James D. Fluckey

The primary objective of this investigation was to determine whether 2H2O and phenylalanine (Phe) flooding dose methods yield comparable fractional rates of protein synthesis (FSR) in skeletal muscle following a single bout of high-intensity resistance exercise (RE). Sprague-Dawley rats were assigned by body mass to either 4-h control (CON 4 h; n = 6), 4-h resistance exercise (RE 4 h; n = 6), 24-h control (CON 24 h; n = 6), or 24-h resistance exercise (RE 24 h; n = 6). The RE groups were operantly conditioned to engage in a single bout of high-intensity, “squat-like” RE. All rats were given an intraperitoneal injection of 99.9% 2H2O and provided 4.0% 2H2O drinking water for either 24 ( n = 12) or 4 h ( n = 12) prior to receiving a flooding dose of l-[2,3,4,5,6-3H]Phe 16 h post-RE. Neither method detected an effect of RE on FSR in the mixed gastrocnemius, plantaris, or soleus muscle. Aside from the qualitative similarities between methods, the 4-h 2H2O FSR measurements, when expressed in percent per hour, were quantitatively greater than the 24-h 2H2O and Phe flooding in all muscles ( P < 0.001), and the 24-h 2H2O was greater than the Phe flooding dose in the mixed gastrocnemius and plantaris ( P < 0.05). In contrast, the actual percentage of newly synthesized protein was significantly higher in the 24- vs. 4-h 2H2O and Phe flooding dose groups ( P < 0.001). These results suggest that the methodologies provide “qualitatively” similar results when a perturbation such as RE is studied. However, due to potential quantitative differences between methods, the experimental question should determine what approach should be used.


1990 ◽  
Vol 10 (2) ◽  
pp. 162-169 ◽  
Author(s):  
Katharine M. Hargreaves-Wall ◽  
Jody L. Buciak ◽  
William M. Pardridge

Brain protein synthesis was measured in anesthetized adult, male Sprague–Dawley rats by an in situ internal carotid arterial perfusion technique using [3H]leucine. The specific activity of free intracellular leucine and of tRNA leucine were determined by HPLC separation of phenylisothiocyanate (PITC) derivatives of amino acids. The specific activity of the leucyl-tRNA pool rapidly equilibrated with the free intracellular leucine pool within 2 min. The specific activity of the tRNA and free leucine pools in brain reached equilibrium by 10 min. Plasma amino acid specific activity, however, remained threefold higher than the specific activity of tRNA and free leucine pools. Estimates of protein synthesis were 0.62 ± 0.06 nmol/min/g and were constant between 10 and 30 min of perfusion. The in situ perfusion model for protein synthesis described is a controlled system suited to measurements of protein synthesis in brain that can be applied to the study of brain metabolism under changing physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document