scholarly journals Alzheimer's disease pattern of brain atrophy predicts cognitive decline in Parkinson's disease

Brain ◽  
2011 ◽  
Vol 135 (1) ◽  
pp. 170-180 ◽  
Author(s):  
D. Weintraub ◽  
N. Dietz ◽  
J. E. Duda ◽  
D. A. Wolk ◽  
J. Doshi ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Claudia Cicognola ◽  
Oskar Hansson ◽  
Philip Scheltens ◽  
Hlin Kvartsberg ◽  
Henrik Zetterberg ◽  
...  

Abstract Background Elevated cerebrospinal fluid (CSF) concentrations of total tau (T-tau) and phosphorylated tau at Thr181 (P-tau181) protein are typical of Alzheimer’s disease (AD). However, the T-tau assay measures only the mid-region of the protein, while tau in CSF is instead composed of a series of fragments. One fragment species in particular, N-224, shows increased levels in AD compared to controls. In this multicentre study, we performed a clinical validation of the N-224 assay in cohorts including patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD, non-AD dementias and controls. Methods Cohorts consisted of 30 SCD and 30 probable AD from the Amsterdam Dementia Cohort (cohort 1) and 539 controls, 195 SCD, 232 MCI, 137 AD and 253 non-AD from the Swedish BioFINDER study (cohort 2). All samples had AD core biomarkers (Aβ42, T-tau, P-tau181) measurements. N-224 was measured with an in-house ultrasensitive Simoa assay. Results N-224 levels were significantly higher in AD compared to SCD (cohort 1: p = 0.003) and in AD compared to all other diagnostic groups in cohort 2 (control, SCD, MCI and non-AD, p < 0.0001). Within the non-AD group, N-224 showed significantly lower concentrations compared to AD in Parkinson’s disease (PD, p < 0.0001), Parkinson’s disease dementia (PDD, p = 0.004), progressive supranuclear palsy (PSP, < 0.0001), multiple system atrophy (MSA, p = 0.002) and parkinsonisms not otherwise specified (NOS, p = 0.007). In cohort 1, higher concentrations of N-224 were associated to lower Mini-Mental State Examination (MMSE) scores (R2 = 0.318, β = 0.564, p ≤ 0.0001) and could accurately identify a pathological (< 24) MMSE score (p < 0.0001, AUC = 0.824). Conclusions N-224 tau can distinguish AD subjects from SCD and can discriminate subgroups of non-AD dementias from AD. Therefore, N-224 may be a useful addition to the tau biomarker toolbox for the study of tau species in CSF and for better understanding disease pathogenesis.


Author(s):  
Thomas F Tropea ◽  
Alice Chen-Plotkin

Concomitant neuropathological hallmarks of Alzheimer&rsquo;s Disease (AD) are common in the brains of people with Parkinson&rsquo;s disease (PD). Furthermore, AD biomarkers are associated with cognitive decline and dementia in PD patients during life. Here, we highlight the considerable overlap between AD and PD, emphasizing neuropathological, biomarker, and mechanistic studies. We suggest that precision medicine approaches may successfully identify PD patients most likely to develop concomitant AD. The ability to identify PD patients at high risk for future concomitant AD in turn provides an ideal cohort for trials of AD-directed therapies in PD patients, aimed at delaying or preventing cognitive symptoms.


2016 ◽  
Vol 3 (5) ◽  
pp. 346-355 ◽  
Author(s):  
Nicholas S. Lim ◽  
Christine R. Swanson ◽  
Hua‐Ren Cherng ◽  
Travis L. Unger ◽  
Sharon X. Xie ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 834
Author(s):  
Thomas F. Tropea ◽  
Alice Chen-Plotkin

Concomitant neuropathological hallmarks of Alzheimer’s Disease (AD) are common in the brains of people with Parkinson’s disease (PD). Furthermore, AD biomarkers are associated with cognitive decline and dementia in PD patients during life. Here, we highlight the considerable overlap between AD and PD, emphasizing neuropathological, biomarker, and mechanistic studies. We suggest that precision medicine approaches may successfully identify PD patients most likely to develop concomitant AD. The ability to identify PD patients at high risk for future concomitant AD in turn provides an ideal cohort for trials of AD-directed therapies in PD patients, aimed at delaying or preventing cognitive symptoms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257372
Author(s):  
Michael Bartl ◽  
Mohammed Dakna ◽  
Douglas Galasko ◽  
Samantha J. Hutten ◽  
Tatiana Foroud ◽  
...  

Aim Several pathophysiological processes are involved in Parkinson’s disease (PD) and could inform in vivo biomarkers. We assessed an established biomarker panel, validated in Alzheimer’s Disease, in a PD cohort. Methods Longitudinal cerebrospinal fluid (CSF) samples from PPMI (252 PD, 115 healthy controls, HC) were analyzed at six timepoints (baseline, 6, 12, 24, 36, and 48 months follow-up) using Elecsys® electrochemiluminescence immunoassays to quantify neurofilament light chain (NfL), soluble TREM2 receptor (sTREM2), chitinase-3-like protein 1 (YKL40), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), S100, and total α-synuclein (αSyn). Results αSyn was significantly lower in PD (mean 103 pg/ml vs. HC: 127 pg/ml, p<0.01; area under the curve [AUC]: 0.64), while all other biomarkers were not significantly different (AUC NfL: 0.49, sTREM2: 0.54, YKL40: 0.57, GFAP: 0.55, IL-6: 0.53, S100: 0.54, p>0.05) and none showed a significant difference longitudinally. We found significantly higher levels of all these markers between PD patients who developed cognitive decline during follow-up, except for αSyn and IL-6. Conclusion Except for αSyn, the additional biomarkers did not differentiate PD and HC, and none showed longitudinal differences, but most markers predict cognitive decline in PD during follow-up.


2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


Sign in / Sign up

Export Citation Format

Share Document