scholarly journals Exosomal miRNAs are potential diagnostic biomarkers between malignant and benign thyroid nodules based on next-generation sequencing

Author(s):  
Qunxiong Pan ◽  
Jiangman Zhao ◽  
Mingzhu Li ◽  
Xiaoyu Liu ◽  
Yaping Xu ◽  
...  

Abstract An accurate biomarker or method for diagnosis of thyroid nodule with indeterminate fine-needle aspiration result is essential for clinical treatment. Micro RNAs (miRNAs) of exosomes are advantageous in the diagnosis of tumors because they are highly stable, and be protected by a bilayer membrane structure. Exosomes were isolated from 13 papillary thyroid carcinoma (PTC) and 7 nodular goiter (NG) patients’ plasma. Small RNA sequencing was performed on exosomes’ RNA in next-generation sequencing (NGS) platform. Then, we performed comprehensive analysis on miRNA expression profile in exosome of two groups. One hundred and twenty-nine differentially expressed miRNAs were identified in plasma exosomes between PTC and NG patients. Forty-nine miRNAs were up-regulated, and 80 miRNAs were down-regulated in PTC patients. Receiver operating characteristic (ROC) curves of 129 miRNAs were plotted. Area under curve (AUC) of 129 miRNAs was 0.571–0.951, with distribution peak of 0.82–0.86. AUC of 11 miRNAs was above 0.9, miR-5189-3p had the most optimal performance for diagnosis between PTC and NG, with 0.951 of AUC. Target genes of 129 miRNAs were enriched into 7 cancer-related signaling pathways, including mitogen-activated protein kinase (MAPK), tumor necrosis factor (TNF), NF-kappa B signaling pathway and so on. This study profiled the miRNA signature of exosomes from PTC patients and NG patients. We proposed a group of miRNAs in plasma exosomes as candidate biomarkers for thyroid nodule diagnosis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tyler Dang ◽  
Irene Lavagi-Craddock ◽  
Sohrab Bodaghi ◽  
Georgios Vidalakis

Citrus dwarfing viroid (CDVd) induces stunting on sweet orange trees [Citrus sinensis (L.) Osbeck], propagated on trifoliate orange rootstock [Citrus trifoliata (L.), syn. Poncirus trifoliata (L.) Raf.]. MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play important roles in the regulation of tree gene expression. To identify miRNAs in dwarfed citrus trees, grown in high-density plantings, and their response to CDVd infection, sRNA next-generation sequencing was performed on CDVd-infected and non-infected controls. A total of 1,290 and 628 miRNAs were identified in stem and root tissues, respectively, and among those, 60 were conserved in each of these two tissue types. Three conserved miRNAs (csi-miR479, csi-miR171b, and csi-miR156) were significantly downregulated (adjusted p-value < 0.05) in the stems of CDVd-infected trees compared to the non-infected controls. The three stem downregulated miRNAs are known to be involved in various physiological and developmental processes some of which may be related to the characteristic dwarfed phenotype displayed by CDVd-infected C. sinensis on C. trifoliata rootstock field trees. Only one miRNA (csi-miR535) was significantly downregulated in CDVd-infected roots and it was predicted to target genes controlling a wide range of cellular functions. Reverse transcription quantitative polymerase chain reaction analysis performed on selected miRNA targets validated the negative correlation between the expression levels of these targets and their corresponding miRNAs in CDVd-infected trees. Our results indicate that CDVd-responsive plant miRNAs play a role in regulating important citrus growth and developmental processes that may participate in the cellular changes leading to the observed citrus dwarf phenotype.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lingxiao Luo ◽  
Ling Lin ◽  
Xiaoyan Zhang ◽  
Qingqing Cai ◽  
Hongbo Zhao ◽  
...  

Gestational trophoblastic neoplasia (GTN) originates from placental tissue and exhibits the potential for invasion and metastasis. Gene alterations in GTN have not been extensively studied because of a lack of qualified tumor specimens after chemotherapy. GTN has a rapid growth rate and is highly metastatic, which makes circulating tumor DNA (ctDNA) sequencing a promising modality for gene profiling. Accordingly, in this study, we performed targeted next-generation sequencing (NGS) of 559 tumor-associated genes using circulating cell-free DNA (cfDNA) collected prior to chemotherapy from 11 patients with GTN. All sequenced genes were associated with oncogenesis, progression, and targeted therapy. The average cfDNA level was 0.43 ± 0.22 ng/μL. Significant correlations were found between cfDNA concentration and maximum lesion diameter (r = 0.625, p=0.040) and time for human chorionic gonadotropin beta subunit (β-HCG) recovering to normal level (r = 0.609, p=0.047). There were no significant correlations between cfDNA concentrations and β-HCG expression level or lung metastasis. ctDNA mutations were detected in all patients, and 73 mutant genes were detected in 11 patients. BMPR1A (27.3%), LRP1B (27.3%), ERCC4 (18.2%), FGF14 (18.2%), HSP90AA1 (18.2%), KAT6A (18.2%), KMT2D (18.2%), MAP3K1 (18.2%), RANBP2 (18.2%), and ZNF217 (18.2%) mutations were detected as overlapping mutations. The mRNA and protein levels of bone morphogenetic protein receptor type 1A were significantly downregulated in human JAR and JEG-3 choriocarcinoma cells (p<0.0001), whereas mRNA and protein levels of mitogen-activated protein kinase kinase kinase 1 were upregulated in these two cell lines (p=0.0128, p=0.0012, respectively). These genes may play important roles in GTN initiation and progression and may be candidate targets for GTN treatment. These findings suggested that cfDNA levels could provide potential assessment value in disease severity of GTN and that ctDNA sequencing was a promising approach for identifying gene mutations in GTN.


2011 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
Thomas Werner

Reproduction and fertility are controlled by specific events naturally linked to oocytes, testes and early embryonal tissues. A significant part of these events involves gene expression, especially transcriptional control and alternative transcription (alternative promoters and alternative splicing). While methods to analyse such events for carefully predetermined target genes are well established, until recently no methodology existed to extend such analyses into a genome-wide de novo discovery process. With the arrival of next generation sequencing (NGS) it becomes possible to attempt genome-wide discovery in genomic sequences as well as whole transcriptomes at a single nucleotide level. This does not only allow identification of the primary changes (e.g. alternative transcripts) but also helps to elucidate the regulatory context that leads to the induction of transcriptional changes. This review discusses the basics of the new technological and scientific concepts arising from NGS, prominent differences from microarray-based approaches and several aspects of its application to reproduction and fertility research. These concepts will then be illustrated in an application example of NGS sequencing data analysis involving postimplantation endometrium tissue from cows.


Sign in / Sign up

Export Citation Format

Share Document