scholarly journals Polylactose, a Novel Prebiotic Dietary Fiber, Reduces Adiposity and Hepatic Lipid Accumulation (P20-027-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Breann Abernathy ◽  
Tonya Schoenfuss ◽  
Daniel Gallaher

Abstract Objectives Polylactose is a novel dietary fiber, synthesized by extrusion of lactose. To evaluate its potential as a prebiotic, we determined its fermentability, effect on the microbiome, and its effects on adiposity, fatty liver, and liver cholesterol in a diet-induced obesity animal model. Methods 72 male Wistar rats were fed normal fat (NF) or high fat (HF, 51% fat by kcal) diets containing various fibers (6% fiber of interest and 3% cellulose, by weight); including cellulose (NFC and HFC), polylactose (HFPL), matched lactose (HFML), matched to the residual lactose in the HFPL diet, and two established prebiotic fibers, polydextrose (HFPD) and fructooligosaccharides (HFFOS). After 10 weeks on experimental diets, organs were harvested and cecal contents collected for analysis. Results There were no significant differences in final body weights among the groups, nor did average daily food intake differ significantly among the HF-fed groups. HFPL animals had greater cecal weight (empty) and lower cecal contents pH when compared to all other groups, suggesting that polylactose is much more vigorously fermented than the other prebiotic fibers. This was also indicated by an increase in taxonomical abundance of probiotic species in the cecum. Epididymal fat pad weight was significantly decreased in the HFPL animals compared to all other HF groups (P < 0.05) and did not differ from the normal fat control (NFC). Liver lipids and cholesterol were significantly reduced in HFPL fed animals when compared to HFC fed animals and were numerically lower than all other HF groups. Transcriptome analysis of the liver revealed increased lipid oxidation and decrease lipid synthesis pathway expression, providing insights into mechanisms of reduction of lipid accumulation in the liver. Conclusions Polylactose is a vigorously fermentable fiber and elicits a beneficial change in the gut microbiome. We also demonstrate that consuming polylactose, in the context of a high fat diet, prevents the accumulation of body fat normally seen with this diet, as well as reduced lipid and cholesterol accumulation in the liver. As these effects of polylactose were greater than those of two established prebiotics, fructooligosaccharides and polydextrose, this suggests that polylactose is a potent prebiotic. Funding Sources Midwest Dairy Association.

2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


2020 ◽  
Author(s):  
Breann E Abernathy ◽  
Tonya C Schoenfuss ◽  
Allison S Bailey ◽  
Daniel D Gallaher

ABSTRACT Background Prebiotic dietary fibers change the intestinal microbiome favorably and provide a health benefit to the host. Objectives Polylactose is a novel fiber, synthesized by extrusion of lactose. We evaluated its prebiotic activity by determining its fermentability, effect on the microbiota, and effects on adiposity and liver lipids in a diet-induced obesity animal model. Methods Male Wistar rats (4–5 wk old) were fed normal-fat (NF, 25% fat energy) or high-fat (HF, 51% fat energy) diets containing different fibers (6% fiber of interest and 3% cellulose, by weight), including cellulose (NFC and HFC, negative and positive controls, respectively), polylactose (HFPL), lactose matched to residual lactose in the HFPL diet, and 2 established prebiotic fibers: polydextrose (HFPD) and fructooligosaccharide (HFFOS). After 10 wk of feeding, organs were harvested and cecal contents collected. Results HFPL animals had greater cecum weight (3 times greater than HFC) and lower cecal pH (∼1 pH unit lower than HFC) than all other groups, suggesting that polylactose is more fermentable than other prebiotic fibers (HFPD, HFFOS; P &lt; 0.05). HFPL animals also had increased taxonomic abundance of the probiotic species Bifidobacterium in the cecum relative to all other groups (P &lt; 0.05). Epididymal fat pad weight was significantly decreased in the HFPL group (29% decrease compared with HFC) compared with all other HF groups (P &lt; 0.05) and did not differ from the NFC group. Liver lipids and cholesterol were reduced in HFPL animals when compared with HFC animals (P &lt; 0.05). Conclusions Polylactose is a fermentable fiber that elicits a beneficial change in the gut microbiota as well as reducing adiposity in rats fed HF diets. These effects of polylactose were greater than those of 2 established prebiotics, fructooligosaccharide and polydextrose, suggesting that polylactose is a potent prebiotic.


2021 ◽  
Author(s):  
sheng Qiu ◽  
Zerong Liang ◽  
Qinan Wu ◽  
Miao Wang ◽  
Mengliu Yang ◽  
...  

Abstract BackgroundNuclear factor erythroid 2-related factor 2 (Nrf2) is reportedly involved in hepatic lipid metabolism, but the results are contradictory and the underlying mechanism thus remains unclear. Herein we focused on elucidating the effects of Nrf2 on hepatic adipogenesis and on determining the possible underlying mechanism. We established a metabolic associated fatty liver disease (MAFLD) model in high fat diet (HFD) fed Nrf2 knockout (Nrf2 KO) mice; further, a cell model of lipid accumulation was established using mouse primary hepatocytes (MPHs) treated with free fatty acids (FAs). Using these models, we investigated the relationship between Nrf2 and autophagy and its role in the development of MAFLD.ResultsWe observed that Nrf2 expression levels were up-regulated in patients with MAFLD and diet-induced obese mice. Nrf2 deficiency led to hepatic lipid accumulation in vivo and in vitro, in addition to, promoting lipogenesis mainly by increasing SREBP-1 activity. Moreover, Nrf2 deficiency attenuated autophagic flux and inhibited the fusion of autophagosomes and lysosomes in vivo and in vitro. Weakened autophagy caused reduced lipolysis in the liver. Importantly, Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and dual-luciferase assay results proved that Nrf2 bound to LAMP1 promoter and regulated its transcriptional activity. We accordingly report that Nrf2-LAMP1 interaction has an indispensable role in Nrf2-regulated hepatosteatosis. ConclusionsThese data collectively confirm that Nrf2 deficiency promotes hepatosteatosis by enhancing SREBP-1 activity and attenuating autophagy. To conclude, our data reveal a novel multi-pathway effect of Nrf2 on lipid metabolism in the liver, and we believe that multi-target intervention of Nrf2 signaling is a promising new strategy for the prevention and treatment of MAFLD.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2103-2113 ◽  
Author(s):  
Xiao-Jing Liu ◽  
Bi-Wei Wang ◽  
Cheng Zhang ◽  
Mi-Zhen Xia ◽  
Yuan-Hua Chen ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1581-1587 ◽  
Author(s):  
Amanda J. Drake ◽  
Peter J. Raubenheimer ◽  
David Kerrigan ◽  
Kerry J. McInnes ◽  
Jonathan R. Seckl ◽  
...  

The association between low birth weight and cardiovascular disease is amplified by the development of obesity. We explored the effects of postnatal high-fat (HF) feeding in dexamethasone (Dex)-programmed rats, in which prenatal glucocorticoid overexposure is associated with reduced birth weight and adult glucose intolerance. Male Wistar rats exposed to Dex or vehicle (Veh) during the last week of gestation were weaned onto HF or control diets for 6 months. Dex-exposed animals were of lower birth weight and showed catch-up growth by 7 wk. There were no differences in obesity or hyperinsulinaemia between Dex-HF and Veh-HF animals. However, Dex-HF animals had increased hepatic triglyceride content compared with Veh-HF animals. mRNA transcript profiles in adipose tissue revealed depot-specific changes in the expression of genes involved in fatty acid esterification and triglyceride synthesis and storage with prenatal Dex exposure. Thus, antenatal glucocorticoid overexposure in rats does not confer increased sensitivity to HF diet-induced obesity, but increases susceptibility to fatty liver. This may be due to depot-specific-programmed alterations in fat metabolism in adipose tissue.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1697
Author(s):  
Xiao-Xuan Guo ◽  
Zhu Zeng ◽  
Yong-Zhong Qian ◽  
Jing Qiu ◽  
Kai Wang ◽  
...  

(1) Background: Modern dietary patterns with a high intake of fat and fructose, as well as refined carbohydrates, closely relate to lipid/glucose metabolic disorders. The main objective of this study is to provide new thoughts in designing functional food with some lipid/glucose metabolism regulating effects for obese people. (2) Methods: The alleviating abilities of γ-oryzanol, phytosterol or ferulic acid-enriched wheat flour on lipid/glucose metabolic dysfunction were evaluated in male SD rats induced by a high-fat-fructose diet. The underlying mechanisms were clarified using western blot. (3) Results: In an in vitro cell model, γ-oryzanol, phytosterol and ferulic acid regulate lipid/glucose metabolism by increasing the phosphorylation of AMPK and Akt, and PI3K expression, as well as decreasing expressions of DGAT1 and SCD. The in vivo study shows that ferulic acid and γ-oryzanol-enriched flours are beneficial for managing body weight, improving glucose metabolism, hyperlipidemia and hepatic lipid accumulation. Phytosterol-enriched flour exerted remarkable effects in regulating hyperinsulinemia, insulin resistance and hyperuricemia. Western blot analysis of proteins from liver samples reveals that these enriched flours alleviated hepatic lipid accumulation and insulin resistance through their elevation in the phosphorylation of AMPK and Akt. (4) Conclusions: Our study indicates that these enriched flours can serve as a health-promoting functional food to regulate obesity-related lipid/glucose metabolic dysfunction in rats.


2017 ◽  
Vol 8 (2) ◽  
pp. 808-815 ◽  
Author(s):  
Dongxiao Su ◽  
Ruifen Zhang ◽  
Fangli Hou ◽  
Jianwei Chi ◽  
Fei Huang ◽  
...  

The repression of miR-33 and miR-122 is a possible molecular mechanism of the hypolipidemic effects of lychee pulp phenolics.


2013 ◽  
Vol 61 (18) ◽  
pp. 4371-4378 ◽  
Author(s):  
Aidilla Mubarak ◽  
Jonathan M. Hodgson ◽  
Michael J. Considine ◽  
Kevin D. Croft ◽  
Vance B. Matthews

Sign in / Sign up

Export Citation Format

Share Document