scholarly journals Exploring the effect of Ni/Cr contents on the sheet-like NiCr-oxide-decorated CNT composites as highly active and stable catalysts for urea electrooxidation

Clean Energy ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 58-66
Author(s):  
Qiuping Gan ◽  
Benzhi Wang ◽  
Judan Chen ◽  
Jianniao Tian ◽  
Tayirjan Taylor Isimjan ◽  
...  

Abstract The developing high-efficiency urea fuel cells have an irreplaceable role in solving the increasingly severe environmental crisis and energy shortages. The sluggish six-electron dynamic anodic oxidation reaction is the bottleneck of the rapid progress of urea fuel-cell technology. To tackle this challenge, we select the NiCr bimetallic system due to the unique synergic effect between the Ni and the Cr. Moreover, better conductivity is assured using carbon nanotubes (CNTs) as the support. Most importantly, we use a simple hydrothermal method in catalyst preparation for easy scale-up at a low cost. The results show that the hybrid catalysts of NiCrx-oxide-CNTs with different Ni/Cr ratios show much better catalytic performance in terms of active surface area and current density as compared to that of Ni-hydro-CNTs. The optimized NiCr2-oxide-CNTs catalyst exhibits not only the largest electrochemically active surface area (ESA, 50.7 m2 g−1) and the highest urea electrocatalytic current density (115.6 mA cm−2), but also outstanding long-term stability. The prominent performance of the NiCr2-oxide-CNTs catalyst is due to the combined effect of the improved charge transfer between Ni and Cr species, the large ESA, along with an elegant balance between the oxygen-defect sites and hydrophilicity. Moreover, we have proposed a synergistically enhanced urea catalytic mechanism.

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2012 ◽  
Vol 12 (6) ◽  
pp. 4919-4927 ◽  
Author(s):  
Nithi Atthi ◽  
Jakrapong Supadech ◽  
Gaetan Dupuy ◽  
On-uma Nimittrakoolchai ◽  
Apirak Pankiew ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 2672-2685 ◽  
Author(s):  
Rhiyaad Mohamed ◽  
Tobias Binninger ◽  
Patricia J. Kooyman ◽  
Armin Hoell ◽  
Emiliana Fabbri ◽  
...  

Synthesis of Sb–SnO2 supported Pt nanoparticles with an outstanding ECSA for the oxygen reduction reaction.


Sign in / Sign up

Export Citation Format

Share Document