scholarly journals Neuronal Encoding of Multisensory Motion Features in the Rat Associative Parietal Cortex

2020 ◽  
Vol 30 (10) ◽  
pp. 5372-5386
Author(s):  
Jeanne Caron-Guyon ◽  
Julien Corbo ◽  
Yoh’i Zennou-Azogui ◽  
Christian Xerri ◽  
Anne Kavounoudias ◽  
...  

Abstract Motion perception is facilitated by the interplay of various sensory channels. In rodents, the cortical areas involved in multisensory motion coding remain to be identified. Using voltage-sensitive-dye imaging, we revealed a visuo–tactile convergent region that anatomically corresponds to the associative parietal cortex (APC). Single unit responses to moving visual gratings or whiskers deflections revealed a specific coding of motion characteristics strikingly found in both sensory modalities. The heteromodality of this region was further supported by a large proportion of bimodal neurons and by a classification procedure revealing that APC carries information about motion features, sensory origin and multisensory direction-congruency. Altogether, the results point to a central role of APC in multisensory integration for motion perception.

2021 ◽  
Vol 15 ◽  
Author(s):  
Iryna Yavorska ◽  
Michael Wehr

Movement has a prominent impact on activity in sensory cortex, but has opposing effects on visual and auditory cortex. Both cortical areas feature a vasoactive intestinal peptide-expressing (VIP) disinhibitory circuit, which in visual cortex contributes to the effect of running. In auditory cortex, however, the role of VIP circuitry in running effects remains poorly understood. Running and optogenetic VIP activation are known to differentially modulate sound-evoked activity in auditory cortex, but it is unknown how these effects vary across cortical layers, and whether laminar differences in the roles of VIP circuitry could contribute to the substantial diversity that has been observed in the effects of both movement and VIP activation. Here we asked whether VIP neurons contribute to the effects of running, across the layers of auditory cortex. We found that both running and optogenetic activation of VIP neurons produced diverse changes in the firing rates of auditory cortical neurons, but with distinct effects on spontaneous and evoked activity and with different patterns across cortical layers. On average, running increased spontaneous firing rates but decreased evoked firing rates, resulting in a reduction of the neuronal encoding of sound. This reduction in sound encoding was observed in all cortical layers, but was most pronounced in layer 2/3. In contrast, VIP activation increased both spontaneous and evoked firing rates, and had no net population-wide effect on sound encoding, but strongly suppressed sound encoding in layer 4 narrow-spiking neurons. These results suggest that VIP activation and running act independently, which we then tested by comparing the arithmetic sum of the two effects measured separately to the actual combined effect of running and VIP activation, which were closely matched. We conclude that the effects of locomotion in auditory cortex are not mediated by the VIP network.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Lohse ◽  
Johannes C. Dahmen ◽  
Victoria M. Bajo ◽  
Andrew J. King

AbstractIntegration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.


2019 ◽  
Vol 5 (1) ◽  
pp. 247-268 ◽  
Author(s):  
Peter Thier ◽  
Akshay Markanday

The cerebellar cortex is a crystal-like structure consisting of an almost endless repetition of a canonical microcircuit that applies the same computational principle to different inputs. The output of this transformation is broadcasted to extracerebellar structures by way of the deep cerebellar nuclei. Visually guided eye movements are accommodated by different parts of the cerebellum. This review primarily discusses the role of the oculomotor part of the vermal cerebellum [the oculomotor vermis (OMV)] in the control of visually guided saccades and smooth-pursuit eye movements. Both types of eye movements require the mapping of retinal information onto motor vectors, a transformation that is optimized by the OMV, considering information on past performance. Unlike the role of the OMV in the guidance of eye movements, the contribution of the adjoining vermal cortex to visual motion perception is nonmotor and involves a cerebellar influence on information processing in the cerebral cortex.


2007 ◽  
Vol 47 (7) ◽  
pp. 887-898 ◽  
Author(s):  
Deborah Giaschi ◽  
Amy Zwicker ◽  
Simon Au Young ◽  
Bruce Bjornson

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
David Wisniewski ◽  
Birte Forstmann ◽  
Marcel Brass

AbstractValue-based decision-making is ubiquitous in every-day life, and critically depends on the contingency between choices and their outcomes. Only if outcomes are contingent on our choices can we make meaningful value-based decisions. Here, we investigate the effect of outcome contingency on the neural coding of rewards and tasks. Participants performed a reversal-learning paradigm in which reward outcomes were contingent on trial-by-trial choices, and performed a ‘free choice’ paradigm in which rewards were random and not contingent on choices. We hypothesized that contingent outcomes enhance the neural coding of rewards and tasks, which was tested using multivariate pattern analysis of fMRI data. Reward outcomes were encoded in a large network including the striatum, dmPFC and parietal cortex, and these representations were indeed amplified for contingent rewards. Tasks were encoded in the dmPFC at the time of decision-making, and in parietal cortex in a subsequent maintenance phase. We found no evidence for contingency-dependent modulations of task signals, demonstrating highly similar coding across contingency conditions. Our findings suggest selective effects of contingency on reward coding only, and further highlight the role of dmPFC and parietal cortex in value-based decision-making, as these were the only regions strongly involved in both reward and task coding.


2016 ◽  
Vol 16 (12) ◽  
pp. 1205
Author(s):  
Brian Metzger ◽  
Kathy Low ◽  
Edward Maclin ◽  
Gabriele Gratton ◽  
Monica Fabiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document