scholarly journals Increased Volume and Function of Right Auditory Cortex as a Marker for Absolute Pitch

2013 ◽  
Vol 24 (5) ◽  
pp. 1127-1137 ◽  
Author(s):  
Martina Wengenroth ◽  
Maria Blatow ◽  
Armin Heinecke ◽  
Julia Reinhardt ◽  
Christoph Stippich ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Wenlu Pan ◽  
Jing Pan ◽  
Yan Zhao ◽  
Hongzheng Zhang ◽  
Jie Tang

Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.


2006 ◽  
Vol 18 (6) ◽  
pp. 288-288
Author(s):  
M Gavrilescu ◽  
S Rossell ◽  
R Maitra ◽  
D Copolov ◽  
T Shea ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
K. J. Forseth ◽  
G. Hickok ◽  
P. S. Rollo ◽  
N. Tandon

Abstract Spoken language, both perception and production, is thought to be facilitated by an ensemble of predictive mechanisms. We obtain intracranial recordings in 37 patients using depth probes implanted along the anteroposterior extent of the supratemporal plane during rhythm listening, speech perception, and speech production. These reveal two predictive mechanisms in early auditory cortex with distinct anatomical and functional characteristics. The first, localized to bilateral Heschl’s gyri and indexed by low-frequency phase, predicts the timing of acoustic events. The second, localized to planum temporale only in language-dominant cortex and indexed by high-gamma power, shows a transient response to acoustic stimuli that is uniquely suppressed during speech production. Chronometric stimulation of Heschl’s gyrus selectively disrupts speech perception, while stimulation of planum temporale selectively disrupts speech production. This work illuminates the fundamental acoustic infrastructure—both architecture and function—for spoken language, grounding cognitive models of speech perception and production in human neurobiology.


Neuroreport ◽  
1999 ◽  
Vol 10 (5) ◽  
pp. 999-1002 ◽  
Author(s):  
Yoshihiro Hirata ◽  
Shinya Kuriki ◽  
Christo Pantev

Neuroreport ◽  
2005 ◽  
Vol 16 (16) ◽  
pp. 1775-1779 ◽  
Author(s):  
Hiroyuki Hirose ◽  
Masaya Kubota ◽  
Ikumi Kimura ◽  
Masato Yumoto ◽  
Yoichi Sakakihara

2020 ◽  
Author(s):  
Marielle Greber ◽  
Carina Klein ◽  
Simon Leipold ◽  
Silvano Sele ◽  
Lutz Jäncke

AbstractThe neural basis of absolute pitch (AP), the ability to effortlessly identify a musical tone without an external reference, is poorly understood. One of the key questions is whether perceptual or cognitive processes underlie the phenomenon as both sensory and higher-order brain regions have been associated with AP. One approach to elucidate the neural underpinnings of a specific expertise is the examination of resting-state networks.Thus, in this paper, we report a comprehensive functional network analysis of intracranial resting-state EEG data in a large sample of AP musicians (n = 54) and non-AP musicians (n = 51). We adopted two analysis approaches: First, we applied an ROI-based analysis to examine the connectivity between the auditory cortex and the dorsolateral prefrontal cortex (DLPFC) using several established functional connectivity measures. This analysis is a replication of a previous study which reported increased connectivity between these two regions in AP musicians. Second, we performed a whole-brain network-based analysis on the same functional connectivity measures to gain a more complete picture of the brain regions involved in a possibly large-scale network supporting AP ability.In our sample, the ROI-based analysis did not provide evidence for an AP-specific connectivity increase between the auditory cortex and the DLPFC. In contrast, the whole-brain analysis revealed three networks with increased connectivity in AP musicians comprising nodes in frontal, temporal, subcortical, and occipital areas. Commonalities of the networks were found in both sensory and higher-order brain regions of the perisylvian area. Further research will be needed to confirm these exploratory results.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Magdalena Solyga ◽  
Tania Rinaldi Barkat

Offset responses in auditory processing appear after a sound terminates. They arise in neuronal circuits within the peripheral auditory system, but their role in the central auditory system remains unknown. Here, we ask what the behavioral relevance of cortical offset responses is and what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally minimizing auditory cortical offset responses decreases the mouse performance to detect sound termination, assigning a behavioral role to offset responses. By combining in vivo electrophysiology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset responses are not only inherited from the periphery but also amplified and generated de novo. Finally, we show that offset responses code more than silence, including relevant changes in sound trajectories. Together, our results reveal the importance of cortical offset responses in encoding sound termination and detecting changes within temporally discontinuous sounds crucial for speech and vocalization.


2019 ◽  
Author(s):  
Alexander J. Billig ◽  
Björn Herrmann ◽  
Ariane E. Rhone ◽  
Phillip E. Gander ◽  
Kirill V. Nourski ◽  
...  

AbstractThe functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl’s gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (four female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.Significance StatementTo understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl’s gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.


2018 ◽  
Author(s):  
KJ Forseth ◽  
G Hickok ◽  
Patrick Rollo ◽  
N Tandon

AbstractSpoken language is thought to be facilitated by an ensemble of predictive mechanisms, yet the neurobiology of prediction for both speech perception and production remains unknown. We used intracranial recordings (31 patients, 6580 electrodes) from depth probes implanted along the anteroposterior extent of the supratemporal plane during rhythm listening, speech perception, and speech production. This revealed a frequency-multiplexed encoding of sublexical features during entrainment and a traveling wave of high-frequency activity across Heschl’s gyrus. Critically, we isolated two predictive mechanisms in early auditory cortex with distinct anatomical and functional characteristics. The first mechanism, localized to bilateral Heschl’s gyrus and indexed by low-frequency phase, predicts the timing of acoustic events (“when”). The second mechanism, localized to planum temporale in the language-dominant hemisphere and indexed by gamma power, predicts the acoustic consequence of speech motor plans (“what”). This work grounds cognitive models of speech perception and production in human neurobiology, illuminating the fundamental acoustic infrastructure – both architecture and function – for spoken language.


Sign in / Sign up

Export Citation Format

Share Document