Abundant Self-Amplifying Intermediate Progenitors in the Subventricular Zone of the Chinese Tree Shrew Neocortex

2020 ◽  
Vol 30 (5) ◽  
pp. 3370-3380
Author(s):  
Chonghai Yin ◽  
Xin Zhou ◽  
Yong-Gang Yao ◽  
Wei Wang ◽  
Qian Wu ◽  
...  

Abstract During evolution, neural progenitor cells in the subventricular zone (SVZ) have fundamental functions, ranging from brain volume expansion to the generation of a six-layered neocortex. In lissencephalic animal models, such as rodents, the majority of neural progenitors in the SVZ are intermediate progenitor cells (IPCs). Most IPCs in rodents undergo neurogenic division, and only a small portion of them divide a very limited number of times to generate a few neurons. Meanwhile, in gyrencephalic animals, such as primates, IPCs are able to self-renew for up to five successive divisions. However, abundant IPCs with successive proliferative capacity have not been directly observed in nonprimate species. In this study, we examined the development of neural progenitors in the Chinese tree shrew (Tupaia belangeri chinensis), a lissencephalic animal with closer affinity than rodents to primates. We identified an expansion of the SVZ and the presence of outer radial glial (oRG) cells in the neocortex. We also found that IPCs have the capacity to self-amplify multiple times and therefore serve as major proliferative progenitors. To our knowledge, our study provides the first direct evidence of abundant IPCs with proliferative potential in a nonprimate species, further supporting the key role of IPCs in brain expansion.

2002 ◽  
Vol 115 (16) ◽  
pp. 3241-3251 ◽  
Author(s):  
Nathalie Duval ◽  
Danielle Gomès ◽  
Viviane Calaora ◽  
Alessandra Calabrese ◽  
Paolo Meda ◽  
...  

Embryonic neural progenitors isolated from the mouse striatal germinal zone grow in vitro as floating cell aggregates called neurospheres, which, upon adhesion, can be induced to differentiate into the three main cell types of the central nervous system (CNS), that is, astrocytes, neurons and oligodendrocytes. To study the possible role of connexins and junctional communication during differentiation of neural progenitors, we assessed cell-to-cell communication by microinjecting Lucifer Yellow into neurospheres at various times after adhesion. Cells located in neurospheres were strongly coupled, regardless of the differentiation time. Microinjections performed on the cell layers formed by differentiated cells migrating out of the neurosphere established that only astrocytes were coupled. These observations suggest the existence of at least three distinct communication compartments:coupled proliferating cells located in the sphere, uncoupled cells undergoing neuronal or oligodendrocytic differentiation and coupled differentiating astrocytes. A blockade of junctional communication by 18-β-glycyrrhetinic acid (βGA) reduced, in a concentration-dependent manner, the viability of undifferentiated neural progenitor cells. This effect appeared to be specific,inasmuch as it was reversible and that cell survival was not affected in the presence of the inactive analog glycyrrhyzic acid. Addition of βGA to adherent neurospheres also decreased cell density and altered the morphology of differentiated cells. Cx43 was strongly expressed in either undifferentiated or differentiated neurospheres, where it was found both within the sphere and in astrocytes, the two cell populations that were dye coupled. Western blot analysis further showed that Cx43 phosphorylation was strongly increased in adherent neurospheres, suggesting a post-translational regulation during differentiation. These results point to a major role of cell-to-cell communication and Cx43 during the differentiation of neural progenitor cells in vitro.


2014 ◽  
Vol 3 (4) ◽  
pp. 470-480 ◽  
Author(s):  
Miriam E. van Strien ◽  
Jacqueline A. Sluijs ◽  
Brent A. Reynolds ◽  
Dennis A. Steindler ◽  
Eleonora Aronica ◽  
...  

2013 ◽  
Vol 38 (9) ◽  
pp. 1960-1972 ◽  
Author(s):  
Ki Chan Kim ◽  
Ji-Woon Kim ◽  
Chang Soon Choi ◽  
Sun Young Han ◽  
Jae Hoon Cheong ◽  
...  

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xianshuang Liu ◽  
Chopp Michael ◽  
Xinli Wang ◽  
Li Zhang ◽  
Yisheng Cui ◽  
...  

Background: Neurogenesis and oligodendrogenesis are associated with functional recovery after stroke. However, the molecules that regulate the generation of new neurons and oligodendrocytes have not been fully investigated. MicroRNAs (miRNAs) post-transcriptionally regulate gene expression. MiR-146a has been reported to regulate the immune response in cells, but the role of miR-146a in neural (NPCs) and oligodendrocyte progenitor cells (OPCs) remains unexplored. Methods and Results: Adult Wistar rats were subjected to right middle cerebral artery occlusion (MCAo). In situ hybridization using locked nucleic acid (LNA)probes against miR-146a showed that stroke considerably increased miR-146a density in the subventricular zone (SVZ, 19 ± 1 vs 6 ± 0.1 area/mm2 in non-MCAo group, p<0.05, n=4/group) and corpus callosum (24 ± 3 vs 8±1 area/mm2 in non-MCAo group) of the ischemic hemisphere. Quantitative RT-PCR also demonstrated a marked upregulation of miR-146a transcript in ischemic NPCs (8.5 fold), suggesting an important role in stroke-induced neurogenesis and oligodendrogenesis. To test its biological function, we over-expressed miR-146a in neural progenitor cells by transfection of miR-146a mimics using nucleofector and found that elevation of miR-146a significantly increased the percentage of Tuj1+ neuroblasts (5 ± 0.3 vs 1 ± 0.2%, p<0.05, n=6/group) and O4+ OPCs (10 ± 1 vs 4 ± 0.4%, p<0.05). Moreover, over-expression of miR-146a in primary cultured OPCs significantly increased several myelin proteins including MBP and PLP, and decreased levels of OPC marker proteins including PDGFRα and NG2, whereas attenuation of miR-146a by siRNA against miR-146a suppressed myelin proteins and augmented OPC marker proteins. Furthermore, miR-146a levels in the OPCs were inversely related to IRAK1 proteins, one of miR-146a target genes. Attenuation of IRAK1 in OPCs substantially increased myelin proteins, indicating that miR-146a mediates oligodendrocyte maturation via targeting IRAK1. Conclusion: Our data provide new insight into molecular mechanisms underlying stroke-induced neurogenesis and oligodendrogenesis by revealing a novel role of miR-146a in NPCs and OPCs, which has potential to be used as a new therapy for neurorecovery after stroke.


2013 ◽  
Vol 73 ◽  
pp. 122-137 ◽  
Author(s):  
Nanette Messemer ◽  
Christin Kunert ◽  
Marcus Grohmann ◽  
Helga Sobottka ◽  
Karen Nieber ◽  
...  

2015 ◽  
Vol 39 (6) ◽  
pp. 750-758 ◽  
Author(s):  
Hui Ding ◽  
Guo-Hua Jin ◽  
Lin-Qing Zou ◽  
Xiao-Qing Zhang ◽  
Hao-Ming Li ◽  
...  

Author(s):  
Nicholas D Allen

The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.


Sign in / Sign up

Export Citation Format

Share Document