scholarly journals Timing of Neuronal Intermediate Filament Proteins Expression in the Mouse Vomeronasal Organ During Pre- and Postnatal Development. An Immunohistochemical Study

2005 ◽  
Vol 30 (8) ◽  
pp. 707-717 ◽  
Author(s):  
Flavia Merigo ◽  
Carla Mucignat-Caretta ◽  
Carlo Zancanaro
2010 ◽  
Vol 24 (11) ◽  
pp. 4396-4407 ◽  
Author(s):  
Parvathi Rudrabhatla ◽  
Philip Grant ◽  
Howard Jaffe ◽  
Michael J. Strong ◽  
Harish C. Pant

1995 ◽  
Vol 108 (11) ◽  
pp. 3581-3590 ◽  
Author(s):  
J. Adjaye ◽  
U. Plessmann ◽  
K. Weber ◽  
H. Dodemont

The neuronal cytoplasmic intermediate filament (IF) protein HeNF70 of the gastropod Helix aspersa is identified by sequence analysis of the corresponding 4,600 bp cDNA isolated from a cerebral ganglion cDNA library. HeNF70 shares 60% sequence identity with the neuronal LoNF70 protein of the cephalopod Loligo pealei and only 36% identity with the Helix non-neuronal IF-A protein. All three molluscan IF proteins display the lamin-type extended coil 1b subdomain harbouring six additional heptads and all have long C-terminal sequences with substantial homology to the tail domains of nuclear lamins. The lamin-like tail domains of the two neurofilament proteins share a unique motif comprising 13 residues, which is absent from Helix IF-A and all other known non-neuronal IF proteins. HeNF70 is encoded by a 9.5 kb RNA transcript. The very long 7.2 kb 3′-untranslated sequence contains a unique 26 nucleotide repeat extending over 0.5 kb in its 5′-region. The HeNF70 mRNA is expressed at low abundancy in cerebral ganglia but not in any of the 13 non-neuronal tissues tested. In contrast, all tissues express at fairly high levels the same 4.6 and 4.2 kb mRNAs encoding the Helix non-neuronal IF-A/B proteins. Blot hybridisation studies on genomic DNA and ganglion mRNA with subprobes from the cloned HeNF70 cDNA, as well as sequence analysis of an RT-PCR generated partial cDNA encoding a putative HeNF60 protein, indicate at least two different neuronal IF genes in Helix.


1999 ◽  
Vol 112 (13) ◽  
pp. 2233-2240
Author(s):  
G.Y. Ching ◽  
R.K. Liem

Type IV neuronal intermediate filament proteins consist of alpha-internexin, which can self-assemble into filaments and the neurofilament triplet proteins, which are obligate heteropolymers, at least in rodents. These IF proteins therefore provide good systems for elucidating the mechanism of intermediate filament assembly. To analyze the roles of the head domains of these proteins in contributing to their differential assembly properties, we generated chimeric proteins by swapping the head domains between rat alpha-internexin and either rat NF-L or NF-M and examined their assembly properties in transfected cells that lack their own cytoplasmic intermediate filament network. Lalphaalpha and Malphaalpha, the chimeric proteins generated by replacing the head domain of alpha-internexin with those of NF-L and NF-M, respectively, were unable to self-assemble into filaments. In contrast, alphaLL, a chimeric NF-L protein generated by replacing the head domain of NF-L with that of alpha-internexin, was able to self-assemble into filaments, whereas MLL, a chimeric NF-L protein containing the NF-M head domain, was unable to do so. These results demonstrate that the alpha-internexin head domain is essential for alpha-internexin's ability to self-assemble. While coassembly of Lalphaalpha with NF-M and coassembly of Malphaalpha with NF-L resulted in formation of filaments, coassembly of Lalphaalpha with NF-L and coassembly of Malphaalpha with NF-M yielded punctate patterns. These coassembly results show that heteropolymeric filament formation requires that one partner has the NF-L head domain and the other partner has the NF-M head domain. Thus, the head domains of rat NF-L and NF-M play important roles in determining the obligate heteropolymeric nature of filament formation. The data obtained from these self-assembly and coassembly studies provide some new insights into the mechanism of intermediate filament assembly.


1998 ◽  
Vol 141 (3) ◽  
pp. 727-739 ◽  
Author(s):  
Gregory A. Elder ◽  
Victor L. Friedrich ◽  
Paolo Bosco ◽  
Chulho Kang ◽  
Andrei Gourov ◽  
...  

Neurofilaments (NFs) are prominent components of large myelinated axons and probably the most abundant of neuronal intermediate filament proteins. Here we show that mice with a null mutation in the mid-sized NF (NF-M) subunit have dramatically decreased levels of light NF (NF-L) and increased levels of heavy NF (NF-H). The calibers of both large and small diameter axons in the central and peripheral nervous systems are diminished. Axons of mutant animals contain fewer neurofilaments and increased numbers of microtubules. Yet the mice lack any overt behavioral phenotype or gross structural defects in the nervous system. These studies suggest that the NF-M subunit is a major regulator of the level of NF-L and that its presence is required to achieve maximal axonal diameter in all size classes of myelinated axons.


Sign in / Sign up

Export Citation Format

Share Document