Multiple labeling and time-resolvable fluorophores

1991 ◽  
Vol 37 (9) ◽  
pp. 1486-1491 ◽  
Author(s):  
E P Diamandis

Abstract A new time-resolved fluorescence immunoassay system involving use of the europium chelate of 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label is reviewed. This stable chelate by itself is not very fluorescent but, used in multiple labeling strategies, improves the achievable detection limits. By using multiple labeling, streptavidin tailing, and Eu3+ activation, one can create a very stable, easy-to-use reagent that is suitable for devising highly sensitive immunoassays and other biotechnological assays. This reagent, a streptavidin-based macromolecular complex, is able to detect approximately 300,000 molecules (approximately 0.5 amol) of alpha-fetoprotein in a model noncompetitive immunoassay.

2021 ◽  
Author(s):  
Xindong Chen ◽  
Jianfeng Hong ◽  
Han Zhao ◽  
Zhongyi Xiang ◽  
Yuan Qin ◽  
...  

Abstract Background: A rapid and highly sensitive assay for tumor-associated trypsinogen-2 (TAT-2) based on the time-resolved fluorescence immunoassay (TRFIA) detection technique was developed for the determination of serum TAT-2 levels in cancers. Results: The measurement range of TAT-2-TRFIA was 1.53-300 ng/mL. The within-run and between-run coefficients of variation of TAT-2-TRFIA were 4.38% and 7.82%, respectively. The recovery rate of TAT-2-TRFIA was 103.0%. The cross-reaction rates of trypsin and T-cell immunoglobulin mucin 3 were 0.02% and 0.82%, respectively. The TAT-2-positive rates in lung cancer, liver cancer, nasopharyngeal cancer, cholangiocarcinoma, brain cancer, and pancreatic cancer were 45.9%, 50.0%, 45.0%, 64.3%, 50.0%, and 41.7%, respectively, with the areas under ROC curves of 0.788, 0.734, 0.862, 0.720, 0.887, and 0.585, respectively. In patients with lung cancer, the positive rate of the single indicator CEA was 28.4%, which increased to 60.6% after combined use with TAT-2. In patients with cholangiocarcinoma, the positive rate of CA-199 was 35.7%, which increased to 71.4% after combined use with TAT-2. Conclusions: TAT-2 is expected to be used as an auxiliary diagnostic indicator for the combined use of tumor markers to improve the positive rate and accuracy of detection.


1989 ◽  
Vol 35 (4) ◽  
pp. 555-559 ◽  
Author(s):  
G Barnard ◽  
F Kohen ◽  
H Mikola ◽  
T Lövgren

Abstract We describe a liquid-phase nonseparation time-resolved fluorescence immunoassay for measuring estrone-3-glucuronide in undiluted urine. The sensitivity, specificity, and accuracy are similar to those for a conventional separation fluoroimmunoassay or radioimmunoassay, but the speed, convenience, precision, reliability, and clinical utility of the new method are more advantageous. The labeled antigen, a fluorescent europium chelate covalently linked to estrone-3-glucuronide, is incubated for 10 min with a limited concentration of polyclonal or monoclonal antibodies to estrone-3-glucuronyl-6-bovine serum albumin and 10 microL of standard or sample (undiluted urine) in microtiter wells. The fluorescence emanating from the antibody-free label, which is proportional to the concentration of estrone-3-glucuronide in the standard or sample, is then measured in a time-resolved fluorometer. The method is useful for monitoring ovarian function in women.


1992 ◽  
Vol 38 (4) ◽  
pp. 545-548 ◽  
Author(s):  
A Papanastasiou-Diamandi ◽  
T K Christopoulos ◽  
E P Diamandis

Abstract We describe an ultrasensitive, enzymatically amplified time-resolved fluorescence immunoassay of thyrotropin (thyroid-stimulating hormone) in serum with use of a terbium chelate as the detectable moiety. In this assay, thyrotropin is first simultaneously reacted with a solid-phase (microtiter well) monoclonal antibody and a soluble biotinylated monoclonal detection antibody. After washing, a streptavidin-alkaline phosphatase conjugate is added, followed by another washing. Alkaline phosphatase acts on the substrate 5-fluorosalicyl phosphate (FSAP) to produce 5-fluorosalicylic acid (FSA). FSA, but not FSAP, can then form with Tb3+ and EDTA a highly fluorescent ternary complex of long fluorescence lifetime. This complex is quantified with time-resolved fluorometry. The thyrotropin assay is highly sensitive (detection limit approximately 0.003 milli-int. unit/L when a total assay time of 85 min is used), precise, and accurate. The thyrotropin assay can also be completed in less than 30 min (detection limit 0.013 milli-int. unit/L), thus making this procedure a candidate technology for high-throughput automated analyzers.


1990 ◽  
Vol 36 (3) ◽  
pp. 503-508 ◽  
Author(s):  
I Kahan ◽  
A Papanastasiou-Diamandi ◽  
G Ellis ◽  
S K Makela ◽  
J McLaurin ◽  
...  

Abstract We describe a new "sandwich"-type non-isotopic immunoassay for human somatotropin (GH, growth hormone) in serum. In the assay, GH is captured by a monoclonal antibody immobilized in a white microtiter well and simultaneously reacted with a second biotinylated monoclonal antibody. The degree of binding of biotinylated antibody, which increases with increasing amount of GH in the sample, is quantified by adding streptavidin labeled with the europium chelate of 4.7 - bis(chlorosulfophenyl) - 1.10 - phenanthroline - 2.9 - dicarboxylic acid. The fluorescent complex on the solid phase is then measured by excitation at 337.1 nm (nitrogen laser) and monitoring the emission at 615 nm in a gated fluorometer/analyzer. The proposed procedure has short incubation times (less than 4 h protocol), uses only 25 microL of serum per microtiter well, and gives precise and accurate results. The method was clinically evaluated with samples obtained from pediatric patients undergoing investigation for growth abnormalities and from a patient with acromegaly.


Sign in / Sign up

Export Citation Format

Share Document