Insights into the ontogeny and activation of T cells

1994 ◽  
Vol 40 (11) ◽  
pp. 2128-2131 ◽  
Author(s):  
T W Mak

Abstract T lymphocytes recognize antigen peptides and major histocompatibility complex products through their T-cell antigen receptors (TcR), consisting of alpha and beta chains. The interaction between T cells and their target cells or antigen-presenting cells is also assisted by a series of other cell-surface polypeptides, most notably CD4 and CD8, which are selectively expressed on mature helper/inducer and killer/suppressor T cells, respectively. Upon engagement of their ligands, a series of signals is transduced intracytoplasmically via some of these molecules and their associated proteins. Perhaps the most important enzyme in this signal transduction process is the lymphocyte-specific tyrosine kinase lck. Another important component is the cell-surface tyrosine phosphatase CD45. This molecule is alternatively spliced and the different isoforms are expressed on the various hematopoietic and lymphopoietic cells. Signaling through the TcR-CD4 D8-lck-CD45 complex is thought to be insufficient to activate T lymphocytes. A costimulatory signal is believed to be essential, and many investigators have suggested that CD28, a ligand for B7/BB1, is such a signal. Immune responses are also controlled by a number of cytokines and soluble factors. Signaling through the tumor necrosis factor receptor p55 is required for clearance of intracellular pathogens. Transcriptional factors involved in controlling interferon production are also important in T-cell development and immune responses. In an attempt to gain a better understanding of the roles of these molecules in T-lymphocyte functions and ontogeny, we generated a series of mutant mice with disruptions in the genes coding for these molecules. We are analyzing the mutant mice to evaluate the importance of these genes in T-cell development.

Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development, and it considers the opportunity to convert iPSC-derived T cells into off-the-shelf T cells for universal CAR-T cell treatment.


Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR-Technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development and provides a roadmap for development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs. Keywords: CAR-T cell; iPSC; T cell; iPSC-derived T cell; tumor cell; therapeutic; off-the-shelf


Author(s):  
Muhammad Sadeqi Nezhad

CAR-T cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T-cell source used in CAR-T cell therapy is predominantly derived from the patient’s own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. Autologous CAR-T cell generation is time-consuming due to lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), could provide an unlimited T-cell source for CAR-T cell development. iPSC-derived T cells would be a promising infinite T-cell source and are phenotypically defined, expandable and functional as physiological T cells. iPSC-derived T cells provide a feasible T-cell source for the development of off-the-shelf T cells and CAR-T cells. The combination of iPSC and CAR-Technologies provides an extraordinary opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. T-iPSCs in combination with CAR is in early stage of development and the pre-clinical and clinical studies concerning the combination of these novel technologies are not sufficient. This article critically reviews the progress in iPSC-derived T cell development and provides a roadmap for development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs. Keywords: CAR-T cell; iPSC; T cell; iPSC-derived T cell; tumor cell; therapeutic; off-the-shelf


Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. e18-e25 ◽  
Author(s):  
Il-Kang Na ◽  
John C. Markley ◽  
Jennifer J. Tsai ◽  
Nury L. Yim ◽  
Bradley J. Beattie ◽  
...  

Abstract We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatial-temporal activation patterns of (1) proliferating T lymphocytes during graft-versus-host disease (GVHD) and (2) T-cell precursors during T-cell development after allogeneic hematopoietic stem cell transplantation (HSCT). In the first days after HSCT, donor T cells migrated to the peripheral lymph nodes and the intestines, whereas the NFAT activation was dominant in the intestines, suggesting an important role for the intestines in the early stages of alloactivation during development of GVHD. After adoptive transfer of in vitro-derived T-cell receptor (TCR) H-Y transgenic T-cell precursors into B6 (H-2b) hosts of both sexes, NFAT signaling and development into CD4+ or CD8+ single-positive cells could only be detected in the thymus of female recipients indicating either absence of positive selection or prompt depletion of double-positive thymocytes in the male recipients. Because NFAT plays an important role in a wide range of cell types, our system could provide new insights into a variety of biologic processes.


1979 ◽  
Vol 150 (6) ◽  
pp. 1310-1322 ◽  
Author(s):  
M Lipinski ◽  
W H Fridman ◽  
T Tursz ◽  
C Vincent ◽  
D Pious ◽  
...  

Peripheral T lymphocytes from patients with infectious mononucleosis (IM) are sensitized in vivo against the Epstein-Barr virus (EBV). The expression of HLA-A, B, or C molecules at the target cell surface is necessary for the cytotoxic reaction because (a) EBV-positive Daudi cells lacking HLA-A, B, and C determinants are resistant to anti-EBV T-cell lysis, (b) cytolysis of EBV-positive target cells can be consistently inhibited by anti-HLA-A, B, and C and anti-beta 2 microglobulin antibodies. However, no evidence for allogeneic restriction in this system was apparent as (a) cytotoxic T lymphocytes (CTL) from one given individual could exert a cytotoxicity of a similar magnitude on different EBV-positive target cells, regardless of the number of HLA-A or B specificities shared by the effectors and targets; (b) CTL from IM patients were able to kill target cells without any HLA-A or B antigen in common; and (c) T5-1 variants lacking one or two HLA antigens at the A, B, or D locus are killed to the same extent as the parental cells. 7 of the 9 IM patients with detectable circulating anti-EBV CTL carried the HLA-A1 antigen, whereas none of the 16 IM patients lacking detectable peripheral CTL were HLA-A1 positive (mean specific lysis of T5-1 target cells by T cells from HLA-A1 positive patients: 29.3 vs. 0.6% in HLA-A1-negative patients) (P less than 10(-9)). These data suggest an HLA-A1-linked gene control of the magnitude of the anti-EBV CTL response. Thus, the HLA region appears to act at two different level sin the T-cell-mediated lysis of EBV-infected cells by controlling first, the development of anti-EBV and second, the expression of HLA-A, B, and C molecules involved as recognition structures at the target cell surface.


1977 ◽  
Vol 146 (1) ◽  
pp. 91-106 ◽  
Author(s):  
T Hamaoka ◽  
M Yoshizawa ◽  
H Yamamoto ◽  
M Kuroki ◽  
M Kitagawa

An experimental condition was established in vivo for selectively eliminating hapten-reactive suppressor T-cell activity generated in mice primed with a para-azobenzoate (PAB)-mouse gamma globulin (MGG)-conjugate and treated with PAB-nonimmunogenic copolymer of D-amino acids (D- glutamic acid and D-lysine; D-GL). The elimination of suppressor T-cell activity with PAB-D-GL treatment from the mixed populations of hapten- reactive suppressor and helper T cells substantially increased apparent helper T-cell activity. Moreover, the inhibition of PAB-reactive suppressor T-cell generation by the pretreatment with PAB-D-GL before the PAB-MGG-priming increased the development of PAB-reactive helper T-cell activity. The analysis of hapten-specificity of helper T cells revealed that the reactivity of helper cells developed in the absence of suppressor T cells was more specific for primed PAB-determinants and their cross-reactivities to structurally related determinants such as meta-azobenzoate (MAB) significantly decreased, as compared with the helper T-cell population developed in the presence of suppressor T lymphocytes. In addition, those helper T cells generated in the absence of suppressor T cells were highly susceptible to tolerogenesis by PAB-D- GL. Similarly, the elimination of suppressor T lymphocytes also enhanced helper T-cell activity in a polyclonal fashion in the T-T cell interactions between benzylpenicilloyl (BPO)-reactive T cells and PAB- reactive T cells after immunization of mice with BPO-MGG-PAB. Thus inhibition of BPO-reactive suppressor T-cell development by the BPO-v-GL- pretreatment resulted in augmented generation of PAB-reactive helper T cells with higher susceptibility of tolerogenesis to PAB-D-GL. Thus, these results support the notion that suppressor T cells eventually suppress helper T-cell activity and indicate that the function of suppressor T cells related to helper T-cell development is to inhibit the increase in the specificity and apparent affinity of helper T cells in the primary immune response. The hapten-reactive suppressor and helper T lymphocytes are considered as a model system of T cells that regulate the immune response, and the potential applicability of this system to manipulating various T cell-mediated immune responses is discussed in this context.


2018 ◽  
Vol 46 (4) ◽  
pp. 441-449
Author(s):  
Sowmya Angusamy ◽  
Tamer Mansour ◽  
Mohammed Abdulmageed ◽  
Rachel Han ◽  
Brian C. Schutte ◽  
...  

Abstract Background: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. Methods: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. Results: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. Conclusions: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


2018 ◽  
Vol 204 ◽  
pp. 9-15 ◽  
Author(s):  
Jeremy Santamaria ◽  
Julie Darrigues ◽  
Joost P.M. van Meerwijk ◽  
Paola Romagnoli

2009 ◽  
Vol 30 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Wen Qing Li ◽  
Tad Guszczynski ◽  
Julie A. Hixon ◽  
Scott K. Durum

ABSTRACT Interleukin-7 (IL-7) is critical for T-cell development and peripheral T-cell homeostasis. The survival of pro-T cells and mature T cells requires IL-7. The survival function of IL-7 is accomplished partly through induction of the antiapoptotic protein Bcl-2 and inhibition of proapoptotic proteins Bax and Bad. We show here that the proapoptotic protein Bim, a BH3-only protein belonging to the Bcl-2 family, also plays a role in peripheral T-cell survival. Deletion of Bim partially protected an IL-7-dependent T-cell line and peripheral T cells, especially cells with an effector memory phenotype, from IL-7 deprivation. However, T-cell development in the thymus was not restored in IL-7−/− Rag2−/− mice reconstituted with Bim−/− bone marrow. IL-7 withdrawal altered neither the intracellular location of Bim, which was constitutively mitochondrial, nor its association with Bcl-2; however, a reduction in its association with the prosurvival protein Mcl-1 was observed. IL-7 withdrawal did not increase Bim mRNA or protein expression but did induce changes in the isoelectric point of BimEL and its reactivity with an antiphosphoserine antibody. Our findings suggest that the maintenance of peripheral T cells by IL-7 occurs partly through inhibition of Bim activity at the posttranslational level.


Sign in / Sign up

Export Citation Format

Share Document