scholarly journals Evaluation of the newborn’s blood gas status

1997 ◽  
Vol 43 (1) ◽  
pp. 215-221 ◽  
Author(s):  
Robert T Brouillette ◽  
David H Waxman

Abstract Blood gas measurements and complementary, noninvasive monitoring techniques provide the clinician with information essential to patient assessment, therapeutic decision making, and prognostication. Blood gas measurements are as important for ill newborns as for other critically ill patients, but rapidly changing physiology, difficult access to arterial and mixed venous sampling sites, and small blood volumes present unique challenges. This paper discusses considerations for interpretation of blood gases in the newborn period. Blood gas measurements and noninvasive estimations provide important information about oxygenation. The general goals of oxygen therapy in the neonate are to maintain adequate arterial PaO2 and SaO2, and to minimize cardiac work and the work of breathing. Pulse oximetry and transcutaneous oxygen monitoring are extraordinarily useful techniques of estimating and noninvasively monitoring the neonate’s oxygenation, but each method has limitations. Arterial blood gas determinations of pCO2 provide the most accurate determinations of the adequacy of alveolar ventilation, but capillary, transcutaneous, and end-tidal techniques are also useful. An approach to and examples of acid-base disorders are presented. Three hemoglobin variants relevant to the newborn are considered: fetal hemoglobin, carboxyhemoglobin, and methemoglobin. Blood gases obtained in the immediate perinatal period can help assess perinatal asphyxia, but particular attention must be paid to the sampling site, the time of life, and the possible and proven diagnoses.

Arterial blood gas (ABGs) analysis forms the cornerstone of emergency respiratory investigation. In many situations values obtained dictate management strategy and facilitate decision-making. It is an uncomfortable procedure for the patients and if repeated ABGs are required, consider whether less invasive measures, such as respiratory rate, pulse oximetry or capillary blood gas measurements could be used....


Author(s):  
Tom Scott ◽  
Hanna van Waart ◽  
Xavier CE Vrijdag ◽  
David Mullins ◽  
Peter Mesley ◽  
...  

Arterial blood gas (ABG) measurements at both maximum depth and at re-surfacing prior to breathing have not previously been measured during freedives conducted to extreme depth in cold open-water conditions. An elite freediver was instrumented with a left radial arterial cannula connected to two sampling syringes through a low-volume splitting device. He performed two open-water dives to 60 metres depth (197', 7 atmospheres absolute pressure) in the constant weight with fins competition format. ABG samples were drawn at 60 metres (by a mixed-gas scuba diver), and again on re-surfacing before breathing. An immersed surface static apnea, of identical length to the dives and with ABG sampling at identical times, was also performed. Both dives lasted approximately two minutes. PaO2 increased during descent from an indicative baseline of 15.8 kPa (after hyperventilation and glossopharyngeal insufflation) to 42.8 and 33.3 kPa (dives one and two), and decreased precipitously (to 8.2 and 8.6 kPa) during ascent. PaCO2 also increased from a low indicative baseline of 2.8 kPa to 6.3 and 5.1 kPa on dives one and two; an increase not explained by metabolic production of CO2 alone since PaCO2 actually decreased during ascent (to 5.2 and 4.5 kPa). Surface static apnea caused a steady decrease in PaO2 and increase in PaCO2 without the inflections provoked by depth changes. Lung compression and expansion provoke significant changes in both PaO2 and PaCO2 during rapid descent and ascent on a deep freedive. These changes generally support predictive hypotheses and previous findings in less extreme settings.


1986 ◽  
Vol 9 (6) ◽  
pp. 427-432 ◽  
Author(s):  
R. Fumagalli ◽  
T. Kolobow ◽  
P. Arosio ◽  
V. Chen ◽  
D.K. Buckhold ◽  
...  

A total of 44 preterm fetal lambs at great risk of developing respiratory failure were delivered by Cesarean section, and were then managed on conventional mechanical pulmonary ventilation. Fifteen animals initially fared well, and 14 of these were long term survivors. Twenty-nine other lambs showed a progressive deterioration in arterial blood gases within 30 minutes of delivery, of which 10 lambs were continued on mechanical pulmonary ventilation (20% survival), while the remaining 19 lambs were placed on an extracorporeal membrane lung respiratory assist (79% survival). Extracorporeal membrane lung bypass rapidly corrected arterial blood gas values, and permitted the use of high levels of CPAP instead of the continuation of mechanical pulmonary ventilation at high peak airway pressures. Improvement in lung function was gradual, and predictable. Early institution of extracorporeal respiratory assist using a membrane artificial lung rapidly corrected arterial blood gas values and significantly improved on neonate survival.


1986 ◽  
Vol 61 (3) ◽  
pp. 1192-1194 ◽  
Author(s):  
J. D. Wood ◽  
N. L. Herman ◽  
D. R. Kostreva

Rats were effectively ventilated with 100% O2 mixed with room air utilizing a modified tracheostomy tube and a Bird Mark 7 respirator to maintain arterial blood gases within normal limits. A 3-cm segment of rubber pilot tubing was attached to a 15-mm respiratory connector and a 3-cm piece of polyethylene catheter tubing was fitted snugly into the other end. The catheter was inserted and secured into the trachea of 250- to 500-g Sprague-Dawley rats with the adaptor hose of the respirator fitted onto the 15-mm connector following tracheostomy. Manometer and inspiratory flow rate controls of the respirator were set to their minimum operating position. Appropriate rate control adjustments were made when necessary as determined by arterial blood gas measurements. By use of the above ventilation system, adequate arterial blood gases of anesthesized rats can be maintained for greater than 3 h.


1988 ◽  
Vol 63 (7 Spec No) ◽  
pp. 743-747 ◽  
Author(s):  
B I McLain ◽  
J Evans ◽  
P R Dear

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Azam Faraji ◽  
Alireza Khatony ◽  
Gholamreza Moradi ◽  
Alireza Abdi ◽  
Mansour Rezaei

Aim. This study was aimed at comparing the effects of the open and closed suctioning techniques on the arterial blood gas values in patients undergoing open-heart surgery.Methods. In a clinical trial, we recruited 42 patients after open-heart surgery in an educational hospital. Each patient randomly underwent both open and closed suctioning. ABGs, PaO2, SaO2, PaCO2, were analyzed before and one, five, and fifteen minutes after each suctioning episode.Results. At first the pressure of oxygen in arterial blood increased; however, this increase in the open technique was greater than that of the closed system(P<0.001). The pressure of oxygen decreased five and fifteen minutes after both suctioning techniques(P<0.05). The trends of carbon dioxide variations after the open and closed techniques were upward and downward, respectively. Moreover, the decrease in the level of oxygen saturation five and fifteen minutes after the open suctioning was greater than that of the closed suctioning technique(P<0.05).  Conclusion. Arterial blood gas disturbances in the closed suctioning technique were less than those of the open technique. Therefore, to eliminate the unwanted effects of endotracheal suctioning on the arterial blood gases, the closed suctioning technique is recommended.


Sign in / Sign up

Export Citation Format

Share Document