scholarly journals Very Small Apolipoprotein A-I-containing Particles from Human Plasma: Isolation and Quantification by High-Performance Size-Exclusion Chromatography

2000 ◽  
Vol 46 (2) ◽  
pp. 207-223 ◽  
Author(s):  
M Nazeem Nanjee ◽  
Eliot A Brinton

Abstract Background: Very small apolipoprotein (apo) A-I-containing lipoprotein (Sm LpA-I) particles with pre-β electrophoretic mobility may play key roles as “nascent” and/or “senescent” HDL; however, methods for their isolation are difficult and often semiquantitative. Methods: We developed a preparative method for separating Sm LpA-I particles from human plasma by high-performance size-exclusion chromatography (HP-SEC), using two gel permeation columns (Superdex 200 and Superdex 75) in series and measuring apo A-I content in column fractions in 30 subjects with HDL-cholesterol (HDL-C) concentrations of 0.4–3.83 mmol/L. Results: Three major sizes of apo A-I-containing particles were detected: an ∼15-nm diameter (∼700 kDa) species; a 7.5–12 nm (100–450 kDa) species; and a 5.8–6.3 nm species (40–60 kDa, Sm LpA-I particles), containing 0.2–3%, 80–96%, and 2–15% of plasma total apo A-I, respectively. Two subjects with severe HDL deficiency had increased relative apo A-I content in Sm LpA-I: 25% and 37%, respectively. The percentage of apo A-I in Sm LpA-I correlated positively with fasting plasma triglyceride concentrations (r = 0.581; P <0.0005) and inversely with total apo A-I (r = −0.551; P <0.0013) and HDL-C concentrations (r = −0.532; P <0.0017), although the latter two relationships were largely attributable to extremely hypoalphalipoproteinemic subjects. The percentage of apo A-I in Sm LpA-I correlated with that in pre-β-migrating species by crossed immunoelectrophoresis (r = 0.98; P <0.0001; n = 24) and with that in the d >1.21 kg/L fraction by ultracentrifugation (r = 0.86; P <0.001; n = 20). Sm LpA-I particles, on average, appear to contain two apo A-I and four phospholipid molecules but little or no apo A-II, triglyceride, or cholesterol. Conclusions: We present a new HP-SEC method for size separation of native HDL particles from plasma, including Sm Lp A-I, which may play important roles in the metabolism of HDL and in its contribution(s) to protection against atherosclerosis. This method provides a basis for further studies of the structure and function of Sm Lp A-I.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miriam F. Suzuki ◽  
Larissa A. Almeida ◽  
Stephanie A. Pomin ◽  
Felipe D. Silva ◽  
Renan P. Freire ◽  
...  

AbstractThe human prolactin antagonist Δ1-11-G129R-hPRL is a 21.9 kDa recombinant protein with 188 amino acids that downregulates the proliferation of a variety of cells expressing prolactin receptors. Periplasmic expression of recombinant proteins in E. coli has been considered an option for obtaining a soluble and correctly folded protein, as an alternative to cytoplasmic production. The aim of this work was, therefore, to synthesize for the first time, the Δ1-11-G129R-hPRL antagonist, testing different activation temperatures and purifying it by classical chromatographic techniques. E. coli BL21(DE3) strain was transformed with a plasmid based on the pET25b( +) vector, DsbA signal sequence and the antagonist cDNA sequence. Different doses of IPTG were added, activating under different temperatures, and extracting the periplasmic fluid via osmotic shock. The best conditions were achieved by activating at 35 °C for 5 h using 0.4 mM IPTG, which gave a specific expression of 0.157 ± 0.015 μg/mL/A600 at a final optical density of 3.43 ± 0.13 A600. Purification was carried out by nickel-affinity chromatography followed by size-exclusion chromatography, quantification being performed via high-performance size-exclusion chromatography (HPSEC). The prolactin antagonist was characterized by SDS-PAGE, Western blotting, reversed-phase high-performance liquid chromatography (RP-HPLC) and MALDI-TOF–MS. The final product presented > 95% purity and its antagonistic effects were evaluated in vitro in view of potential clinical applications, including inhibition of the proliferation of cancer cells overexpressing the prolactin receptor and specific antidiabetic properties, taking also advantage of the fact that this antagonist was obtained in a soluble and correctly folded form and without an initial methionine.


2013 ◽  
Vol 36 (17) ◽  
pp. 2718-2727 ◽  
Author(s):  
Miroslav Janco ◽  
James N. Alexander ◽  
Edouard S. P. Bouvier ◽  
Damian Morrison

Sign in / Sign up

Export Citation Format

Share Document