scholarly journals Endocrine Control of Life-Cycle Stages: A Constraint on Response to the Environment?

The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Jerry D. Jacobs ◽  
John C. Wingfield

Abstract Most organisms live in seasonal environments that fluctuate on a predictable schedule and sometimes unpredictably. Individuals must, therefore, adjust so as to maximize their survival and reproductive success over a wide range of environmental conditions. In birds, as in other vertebrates, endocrine secretions regulate morphological, physiological, and behavioral changes in anticipation of future events. The individual thus prepares for predictable fluctuations in its environment by changing life-cycle stages. We have applied finite-state machine theory to define and compare different life-history cycles. The ability of birds to respond to predictable and unpredictable regimes of environmental variation may be constrained by the adaptability of their endocrine control systems. We have applied several theoretical approaches to natural history data of birds to compare the complexity of life cycles, the degree of plasticity of timing of stages within the cycle, and to determine whether endocrine control mechanisms influence the way birds respond to their environments. The interactions of environmental cues on the timing of life-history stages are not uniform in all populations. Taking the reproductive life-history stage as an example, arctic birds that have short breeding seasons in severe environments appear to use one reliable environmental cue to time reproduction and they ignore other factors. Birds having longer breeding seasons exhibit greater plasticity of onset and termination and appear to integrate several environmental cues. Theoretical approaches may allow us to predict how individuals respond to their environment at the proximate level and, conversely, predict how constraints imposed by endocrine control systems may limit the complexity of life cycles.

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


Author(s):  
R. Schwarz ◽  
J.A.A. Perez

Age structure and hatchling dates of the squid Illex argentinus collected by bottom-trawl fishery in southern Brazilian waters were assessed by the analysis of statolith growth increments. Catches occurred between 2001 and 2002, from 23° to 32°S at depths of 100–700 m. Squid from juvenile to post-spawning stages were collected year round, with age estimated from 98 to 320 days and mantle lengths ranging from 112 to 376 mm. Duration of life cycle events based on statolith growth zones revealed that squids can spend about 14% of their lifespan as paralarva (~30 days), 70% as juvenile (~130 days), leaving maturity and spawning condition to the terminal 10–20% (~30–60 days). The results suggest that, unlike estimates available for Patagonian populations, a general 0.5 year lifespan is predicted for I. argentinus off Brazil. The wide range of size-at-ages implied that catches of shortfin squid off southern Brazil probably include squid hatched throughout the year. Mature and spawning squid caught in summer months hatched in winter and spring, while winter catches revealed mature-spawning individuals hatched both in summer/autumn (~6 months of age) and winter/spring periods (~10–11 months of age). It has been argued that such groups may combine both squid resident of Brazilian outer shelf and slope (22°–34°S) with a six months' lifespan and migrating squid originated from the northern Patagonian shelf (~42°S) with 10–11 months' lifespan.


2013 ◽  
Vol 88 (2) ◽  
pp. 230-236 ◽  
Author(s):  
R. Brinesh ◽  
K.P. Janardanan

AbstractThe life-cycle stages of Pleurogenoides malampuzhensis sp. nov. infecting the Indian bullfrog Hoplobatrachus tigerinus (Daudin) and the skipper frog Euphlyctiscyanophlyctis (Schneider) occurring in irrigation canals and paddy fields in Malampuzha, which forms part of the district of Palakkad, Kerala, are described. The species is described, its systematic position discussed and compared with the related species, P. gastroporus (Luhe, 1901) and P. orientalis (Srivastava, 1934). The life-cycle stages, from cercaria to egg-producing adult, were successfully established in the laboratory. Virgulate xiphidiocercariae emerged from the snail Digoniostoma pulchella (Benson). Metacercariae are found in muscle tissues of dragonfly nymphs and become infective to the frogs within 22 days. The pre-patent period is 20 days. Growth and development of both metacercariae and adults are described.


2016 ◽  
Vol 15 (1) ◽  
pp. 147470491667734 ◽  
Author(s):  
Kristine J. Chua ◽  
Aaron W. Lukaszewski ◽  
DeMond M. Grant ◽  
Oliver Sng

Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity–mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


Author(s):  
Len Asprey ◽  
Michael Middleton

This chapter deals with the planning aspects of an IDCM project, including scope, feasibility, and life-cycle development. It reviews the typical project deliverables that may be used during planning and subsequent phases. The objectives are to consider and discuss: • The importance of planning to the successful implementation of an IDCM solution, and the need to distinguish between product development and project life-cycles; • A product development life-cycle that enterprises can use for an IDCM project; • The steps involved in initiating and defining an IDCM project; • An approach to aligning the development of a management framework with requirements for enabling an IDCM solution, including a review of key life-cycle stages; • Development of a project organization structure that may be applicable for an enterprise IDCM project; • Identification of a set of risks to form the basis of a Risk Management Plan; and • Methodologies suitable for an IDCM project.


1930 ◽  
Vol 7 (2) ◽  
pp. 132-142
Author(s):  
HUGH H. DARBY

Constant division rate in ciliates can be maintained by keeping the culture medium at constant optimum H-ion concentration. The variations in division rate found in the typical protozoan life history, including gradual decline and death, can be reproduced experimentally by altering the pH of the medium. When cultures are maintained under optimum conditions, encystment and conjugation can take place at any age; the life cycle disappears. An explanation based on experiment is given for the apparently contradictory findings of Maupas. Neither conjugation nor endomixis has any effect on the division rate under constant conditions. The length of the endomictic period is affected by the H-ion concentration of the medium.


Author(s):  
Suiran Yu ◽  
Yu Liu ◽  
Lu Li ◽  
Qingjin Peng

Heavy duty machines consume a tremendous amount of energy during their life cycle. Therefore, designing an energy efficient machine is of great importance. This paper presents a method for the comparative life cycle assessment (LCA) of two different types of press machines: servo press and flywheel press to understand quantitatively the environmental emissions during their life cycles. To make a fair comparison of the two machines, the same amount of production is used as the basis for comparison. Assessment scopes and boundaries are defined first, then detailed product structures and manufacturing processes are investigated. After data collection from visiting enterprises, related project reports, academic papers, and commercial software databases, analysis of the life cycle inventory is performed. Comparative inventory tables for each life cycle stages and whole life cycle are presented. The results of the study can be used for decision making during the product purchase, planning and design process.


Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 464-474 ◽  
Author(s):  
C. LAGRUE ◽  
R. RINNEVALLI ◽  
R. POULIN

SUMMARYA number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite.


Sign in / Sign up

Export Citation Format

Share Document