Role of the premature action potential in contractile potentiation: a study of paired stimulation

1972 ◽  
Vol 6 (4) ◽  
pp. 368-374 ◽  
Author(s):  
R. E. EDMANDS ◽  
K. GREENSPAN ◽  
J. C. BAILEY
2004 ◽  
Vol 287 (5) ◽  
pp. C1300-C1310 ◽  
Author(s):  
Tatiana L. Radzyukevich ◽  
Amy E. Moseley ◽  
Daniel A. Shelly ◽  
Gregory A. Redden ◽  
Michael M. Behbehani ◽  
...  

This study uses genetically altered mice to examine the contribution of the Na+-K+-ATPase α2 catalytic subunit to resting potential, excitability, and contractility of the perinatal diaphragm. The α2 protein is reduced by 38% in α2-heterozygous and absent in α2-knockout mice, and α1-isoform is upregulated 1.9-fold in α2-knockout. Resting potentials are depolarized by 0.8–4.0 mV in heterozygous and knockout mice. Action potential threshold, overshoot, and duration are normal. Spontaneous firing, a developmental function, is impaired in knockout diaphragm, but this does not compromise its ability to fire evoked action potential trains, the dominant mode of activation near birth. Maximum tetanic force, rate of activation, force-frequency and force-voltage relationships, and onset and magnitude of fatigue are not changed. The major phenotypic consequence of reduced α2 content is that relaxation from contraction is 1.7-fold faster. This finding reveals a distinct cellular role of the α2-isoform at a step after membrane excitation, which cannot be restored simply by increasing α1 content. Na+/Ca2+ exchanger expression decreases in parallel with α2-isoform, suggesting that Ca2+ extrusion is affected by the altered α2 genotype. There are no major compensatory changes in expression of sarcoplasmic reticulum Ca2+-ATPase, phospholamban, or plasma membrane Ca2+-ATPase. These results demonstrate that the Na+-K+-ATPase α1-isoform alone is able to maintain equilibrium K+ and Na+ gradients and to substitute for α2-isoform in most cellular functions related to excitability and force. They further indicate that the α2-isoform contributes significantly less at rest than expected from its proportional content but can modulate contractility during muscle contraction.


1999 ◽  
Vol 26 (12) ◽  
pp. 964-969 ◽  
Author(s):  
Kawonia P Mull ◽  
Qadriyyah Debnam ◽  
Syeda M Kabir ◽  
Mohit Lal Bhattacharyya

Author(s):  
Marian Kollarik ◽  
Fei Ru ◽  
Nikoleta Pavelkova ◽  
John Mulcahy ◽  
John Hunter ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Scott Marrus ◽  
Steven Springer ◽  
Rita Martinez ◽  
Edward Dranoff ◽  
Rebecca Mellor ◽  
...  

Abnormalities of a key repolarizing cardiac potassium current, the fast transient outward potassium current, I to,f , are associated with both heart failure and congenital arrhythmia syndromes. However, the precise role of I to,f in shaping action potential waveforms remains unclear. This study was designed to define the functional role of the fast transient outward potassium current, I to,f , in shaping action potentials in human iPSC-derived cardiomyocytes (iPSC-CMs). Most iPSC-CMs (29 of 43 cells) demonstrated spontaneous electrical activity, slow upstroke velocity (63±71 V/s), a wide range of action potential durations (APD90 = 860±722 ms) and heterogeneous action potential waveforms. Using dynamic current clamp, a modeled human ventricular inwardly rectifying K + current, I K1 , was introduced into iPSC-CMs, resulting in silencing of spontaneous activity, hyperpolarization of the resting membrane potential (RMP = -90±3 mV), increased peak upstroke velocity (dV/dt = 346±71 V/s) and decreased APD90 (420±211 ms) to values similar to those recorded in isolated adult human ventricular myocytes (RMP = -84±3 mV, dV/dt = 348±101 V/s and APD90 = 468±133 ms, all p>0.05). Importantly, a ventricular-like action potential waveform was observed in 25 of the 26 cells studied following the dynamic clamp addition of I K1 . Using these cells as a model of human ventricular myocytes, further dynamic current clamp experiments introduced a modeled human fast transient outward K + current, I to,f , and revealed that increasing in the amplitude of I to,f results in an increase in the phase 1 notch and a progressive shortening of the action potential duration in iPSC-CMs. Together, the experiments here demonstrate that combining human iPSC-CMs with the power of the dynamic current clamp technique to modulate directly and precisely the “expression” of individual ionic currents provides a novel and quantitative approach to defining the roles of specific ionic conductances in regulating the excitability of human cardiomyocytes.


1959 ◽  
Vol 196 (6) ◽  
pp. 1292-1296 ◽  
Author(s):  
R. L. Klein ◽  
W. C. Holland

Data are presented from a study of transmembrane potentials and unidirectional fluxes of K42 under identical conditions in isolated rabbit atria. The effects of acetylcholine and varying extracellular concentrations of Na, K and Ca were investigated. Particular emphasis has been placed on the role of Ca and on the terminal phase of repolarization of the action potential, namely the negative after potential. Data are given which support the contention that the duration of the negative after potential depends on an active transport of K or Na, or both.


1994 ◽  
Vol 72 (3) ◽  
pp. 1250-1259 ◽  
Author(s):  
S. Sugita ◽  
D. A. Baxter ◽  
J. H. Byrne

1. The serotonergic modulation of pleural sensory neurons in Aplysia is mediated via two second messenger systems: the adenosine cyclic monophosphate/protein kinase A (cAMP/PKA) and diacylglycerol/protein kinase C systems. Often membrane permeable derivatives of cAMP, such as 8-(4-parachlorophenylthio)-cAMP (pcpt-cAMP), have been used to investigate the role of cAMP/PKA in modulating sensory neurons. In light of recent findings that pcpt-cAMP may have cAMP-independent actions, we have reexamined the effects of pcpt-cAMP on the action potential and membrane currents of the sensory neurons. 2. Although pcpt-cAMP (500 microM to 1 mM) and serotonin (5-HT; 10 microM) induced comparable measures of spike broadening (an average increase above baseline of 29 and 40%, respectively), the broadening produced by the two was qualitatively different. Serotonin-induced broadening developed slowly over 9-12 min, was most prominent during later phases of the spike repolarization, and reduced the spike afterhyperpolarization. In contrast, pcpt-cAMP-induced broadening developed rapidly, was rather uniform throughout the repolarization phase of the spike, delayed the peak of the action potential, and increased the afterhyperpolarization. 3. Preexposure of sensory neurons to 5-HT did not occlude further spike broaden by subsequent application of pcpt-cAMP. Indeed the effects of the two were additive. In addition, the effects of pcpt-cAMP were not mimicked by another analogue of cAMP, 8-bromo-cAMP. Interestingly, most of the effects of pcpt-cAMP on the action potential were mimicked by 8-(4-parachlorophenyl-thio)-guanosine cyclic monophosphate (pcpt-cGMP), but not by 8-bromo-cGMP. 4. During voltage-clamp pulses to 20 mV, pcpt-cAMP reduced the membrane current throughout the voltage-clamp pulse, which was qualitatively different from the modulation of the membrane current by 5-HT. In addition, the pcpt-cAMP-induced reduction in the membrane current at the beginning of the pulse was much greater than that induced by 5-HT. Moreover, preexposure of sensory neurons to 5-HT did not occlude further reduction in the membrane current by subsequent application of pcpt-cAMP. 5. These results suggest that pcpt-cAMP has some mechanisms of action that are not shared by 5-HT or cAMP but are shared by pcpt-cGMP. In addition, these findings provide further evidence that results obtained with this compound should be interpreted with caution.


1997 ◽  
Vol 272 (1) ◽  
pp. H227-H235 ◽  
Author(s):  
G. R. Li ◽  
S. Nattel

There are no published characterizations of Ca2+ current (ICa) at physiological temperatures in human atrium. Depolarization of human atrial myocytes at 36 degrees C elicited ICa that peaked at +10 mV, with a mean maximum current density of 10.8 +/- 1.1 pA/pF and no evidence for T-type current. Overlap between activation and inactivation curves and incomplete inactivation during pulses comparable to normal action potential duration (APD) were compatible with the observed role of ICa in maintaining the plateau. ICa was frequency dependent between 0.1 and 2 Hz and ICa blockade with 0.2 mM Cd2+ reduced rate-dependent changes in APD: under control, APD at 90% repolarization was 230 +/- 15 ms at 0.1 Hz and 178 +/- 14 ms at 2 Hz (decrease of 52 +/- 5 ms); with Cd2+, values were 121 +/- 7 ms at 0.1 H2 and 115 +/- 6 ms at 2 Hz (decrease of 6 +/- 3 ms, P < 0.01) Isoproterenol (1 microM) increased ICa and prolonged APD from 138 +/- 13 to 199 +/- 15 ms (P < 0.01). These results indicate that, in human atrial cells at 36 degrees C, the properties of L-type ICa contribute importantly to the rate-dependent and autonomic control of APD.


1989 ◽  
Vol 256 (1) ◽  
pp. H74-H84
Author(s):  
Z. Y. Hou ◽  
C. I. Lin ◽  
M. Vassalle ◽  
B. N. Chiang ◽  
K. K. Cheng

The actions of acetylcholine and its interactions with epinephrine were studied in human atrial tissues by recording transmembrane potentials and contractile force. Acetylcholine (0.55-5.5 microM) reduced force, shortened the duration and shifted to more negative values the plateau of action potentials, abolished phase 4 depolarization, and suppressed the activity of spontaneous fibers. During the recovery, often there was a rebound increase in some parameters of the action potential and in force. Epinephrine (0.3-2.8 microM) induced oscillatory potentials and aftercontractions and acetylcholine abolished them. However, during the washout of acetylcholine in the presence of epinephrine, the oscillatory potentials and aftercontractions were larger than before acetylcholine, and repetitive activity was often induced. The inhibitory and excitatory effects of acetylcholine were mimicked by methacholine (5.1 microM) and abolished by atropine (1.5 microM). The postacetylcholine rebound was also potentiated by theophylline (0.6-2 mM) but was not blocked by propranolol (1-3.4 microM), prazosin (1 microM), and diltiazem (0.1 microM). It is concluded that in human atrial fibers acetylcholine has inhibitory as well as excitatory effects that are exaggerated in the presence of epinephrine and are mediated by the activation of the muscarinic receptor. The interaction between acetylcholine and epinephrine involves an antagonism at an intracellular level.


Sign in / Sign up

Export Citation Format

Share Document