scholarly journals Improved ontology for eukaryotic single-exon coding sequences in biological databases

Database ◽  
2018 ◽  
Vol 2018 ◽  
Author(s):  
Roddy Jorquera ◽  
Carolina González ◽  
Philip Clausen ◽  
Bent Petersen ◽  
David S Holmes
2019 ◽  
Vol 8 (23) ◽  
Author(s):  
Si Chul Kim ◽  
Hyo Jung Lee

Here, we report the draft genome sequence of Pseudorhodobacter sp. strain E13, a Gram-negative, aerobic, nonflagellated, and rod-shaped bacterium which was isolated from the Yellow Sea in South Korea. The assembled genome sequence is 3,878,578 bp long with 3,646 protein-coding sequences in 159 contigs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ayako Nishizawa ◽  
Kazuki Kumada ◽  
Keiko Tateno ◽  
Maiko Wagata ◽  
Sakae Saito ◽  
...  

AbstractPreeclampsia is a pregnancy-induced disorder that is characterized by hypertension and is a leading cause of perinatal and maternal–fetal morbidity and mortality. HLA-G is thought to play important roles in maternal–fetal immune tolerance, and the associations between HLA-G gene polymorphisms and the onset of pregnancy-related diseases have been explored extensively. Because contiguous genomic sequencing is difficult, the association between the HLA-G genotype and preeclampsia onset is controversial. In this study, genomic sequences of the HLA-G region (5.2 kb) from 31 pairs of mother–offspring genomic DNA samples (18 pairs from normal pregnancies/births and 13 from preeclampsia births) were obtained by single-molecule real-time sequencing using the PacBio RS II platform. The HLA-G alleles identified in our cohort matched seven known HLA-G alleles, but we also identified two new HLA-G alleles at the fourth-field resolution and compared them with nucleotide sequences from a public database that consisted of coding sequences that cover the 3.1-kb HLA-G gene span. Intriguingly, a potential association between preeclampsia onset and the poly T stretch within the downstream region of the HLA-G*01:01:01:01 allele was found. Our study suggests that long-read sequencing of HLA-G will provide clues for characterizing HLA-G variants that are involved in the pathophysiology of preeclampsia.


Gene ◽  
2000 ◽  
Vol 241 (2) ◽  
pp. 341
Author(s):  
Giuseppe D'Onofrio ◽  
Kamel Jabbari ◽  
Hector Musto ◽  
Giorgio Bernardi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Franzo

AbstractA new pandemic caused by the betacoronavirus SARS-CoV-2 originated in China in late 2019. Although often asymptomatic, a relevant percentage of affected people can develop severe pneumonia. Initial evidence suggests that dysregulation of the immune response could contribute to the pathogenesis, as previously demonstrated for SARS-CoV. The presence of genome composition features involved in delaying viral recognition is herein investigated for human coronaviruses (HCoVs), with a special emphasis on SARS-CoV-2. A broad collection of HCoVs polyprotein, envelope, matrix, nucleocapsid and spike coding sequences was downloaded and several statistics representative of genome composition and codon bias were investigated. A model able to evaluate and test the presence of a significant under- or over-representation of dinucleotide pairs while accounting for the underlying codon bias and protein sequence was also implemented. The study revealed the significant under-representation of CpG dinucleotide pair in all HcoV, but especially in SARS-CoV and even more in SARS-CoV-2. The presence of forces acting to minimize CpG content was confirmed by relative synonymous codon usage pattern. Codons containing the CpG pair were severely under-represented, primarily in the polyprotein and spike coding sequences of SARS-CoV-2. Additionally, a significant under-representation of the TpA pair was observed in the N and S region of SARS-CoV and SARS-CoV-2. Increasing experimental evidence has proven that CpG and TpA are targeted by innate antiviral host defences, contributing both to RNA degradation and RIG-1 mediated interferon production. The low content of these dinucleotides could contribute to a delayed interferon production, dysregulated immune response, higher viral replication and poor outcome. Significantly, the RIG-1 signalling pathway was proven to be defective in elderlies, suggesting a likely interaction between limited viral recognition and lower responsiveness in interferon production that could justify the higher disease severity and mortality in older patients.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1329-1338
Author(s):  
Peter A Peterson

Transposable elements in maize are composed of a defined molecular structure that includes coding sequences, determiners of functionality and ordered terminal motifs that provide binding sites for transposase proteins. Alterations in these components change the phenotypic expression of unstable genes with transposon inserts. The molecular basis for the altered timing and frequency of transposition as determined by the size and number of spots on kernels or stripes on leaves has generally been described for defective inserts in genes. Most differential patterns can be ascribed to alterations in the terminal motifs of the reporter allele structure that supplies a substrate (terminal inverted repeat motifs) for transposase activity. For autonomously functioning alleles, the explanations for changes in phenotype are not so clear. In this report, an En-related element identified as F-En is described that shares with En the recognition of a specific defective element c1(mr)888104 but differs from En in that this F-En element does not recognize the canonical c1(mr) elements that are recognized by En. Evidence is provided suggesting that F-En does not recognize other En/Spm-related defective elements, some of whose sequences are known. This modified En arose from a c1-m autonomously mutating En allele.


2020 ◽  
Vol 286 ◽  
pp. 198041
Author(s):  
Vitara Punpapong ◽  
Thikhumporn Sittivicharpinyo ◽  
Passorn Wonnapinij ◽  
Wunrada Surat
Keyword(s):  

2019 ◽  
Vol 17 (04) ◽  
pp. 386-389
Author(s):  
Miguel Bento ◽  
Sónia Gomes Pereira ◽  
Wanda Viegas ◽  
Manuela Silva

AbstractAssessing durum wheat genomic diversity is crucial in a changing environmental particularly in the Mediterranean region where it is largely used to produce pasta. Durum wheat varieties cultivated in Portugal and previously assessed regarding thermotolerance ability were screened for the variability of coding sequences associated with technological traits and repetitive sequences. As expected, reduced variability was observed regarding low molecular weight glutenin subunits (LMW-GS) but a specific LMW-GS allelic form associated with improved pasta-making characteristics was absent in one variety. Contrastingly, molecular markers targeting repetitive elements like microsatellites and retrotransposons – Inter Simple Sequence Repeat (ISSR) and Inter Retrotransposons Amplified Polymorphism (IRAP) – disclosed significant inter and intra-varietal diversity. This high level of polymorphism was revealed by the 20 distinct ISSR/IRAP concatenated profiles observed among the 23 individuals analysed. Interestingly, median joining networks and PCoA analysis grouped individuals of the same variety and clustered varieties accordingly with geographical origin. Globally, this work demonstrates that durum wheat breeding strategies induced selection pressure for some relevant coding sequences while maintaining high levels of genomic variability in non-coding regions enriched in repetitive sequences.


Sign in / Sign up

Export Citation Format

Share Document