scholarly journals Extraction of chemical–protein interactions from the literature using neural networks and narrow instance representation

Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Rui Antunes ◽  
Sérgio Matos

Abstract The scientific literature contains large amounts of information on genes, proteins, chemicals and their interactions. Extraction and integration of this information in curated knowledge bases help researchers support their experimental results, leading to new hypotheses and discoveries. This is especially relevant for precision medicine, which aims to understand the individual variability across patient groups in order to select the most appropriate treatments. Methods for improved retrieval and automatic relation extraction from biomedical literature are therefore required for collecting structured information from the growing number of published works. In this paper, we follow a deep learning approach for extracting mentions of chemical–protein interactions from biomedical articles, based on various enhancements over our participation in the BioCreative VI CHEMPROT task. A significant aspect of our best method is the use of a simple deep learning model together with a very narrow representation of the relation instances, using only up to 10 words from the shortest dependency path and the respective dependency edges. Bidirectional long short-term memory recurrent networks or convolutional neural networks are used to build the deep learning models. We report the results of several experiments and show that our best model is competitive with more complex sentence representations or network structures, achieving an F1-score of 0.6306 on the test set. The source code of our work, along with detailed statistics, is publicly available.

2020 ◽  
Vol 10 (8) ◽  
pp. 2690 ◽  
Author(s):  
Changqin Quan ◽  
Zhiwei Luo ◽  
Song Wang

The exponentially increasing size of biomedical literature and the limited ability of manual curators to discover protein–protein interactions (PPIs) in text has led to delays in keeping PPI databases updated with the current findings. The state-of-the-art text mining methods for PPI extraction are primarily based on deep learning (DL) models, and the performance of a DL-based method is mainly affected by the architecture of DL models and the feature embedding methods. In this study, we compared different architectures of DL models, including convolutional neural networks (CNN), long short-term memory (LSTM), and hybrid models, and proposed a hybrid architecture of a bidirectional LSTM+CNN model for PPI extraction. Pretrained word embedding and shortest dependency path (SDP) embedding are fed into a two-embedding channel model, such that the model is able to model long-distance contextual information and can capture the local features and structure information effectively. The experimental results showed that the proposed model is superior to the non-hybrid DL models, and the hybrid CNN+Bidirectional LSTM model works well for PPI extraction. The visualization and comparison of the hidden features learned by different DL models further confirmed the effectiveness of the proposed model.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
Tahani Aljohani ◽  
Alexandra I. Cristea

Massive Open Online Courses (MOOCs) have become universal learning resources, and the COVID-19 pandemic is rendering these platforms even more necessary. In this paper, we seek to improve Learner Profiling (LP), i.e. estimating the demographic characteristics of learners in MOOC platforms. We have focused on examining models which show promise elsewhere, but were never examined in the LP area (deep learning models) based on effective textual representations. As LP characteristics, we predict here the employment status of learners. We compare sequential and parallel ensemble deep learning architectures based on Convolutional Neural Networks and Recurrent Neural Networks, obtaining an average high accuracy of 96.3% for our best method. Next, we predict the gender of learners based on syntactic knowledge from the text. We compare different tree-structured Long-Short-Term Memory models (as state-of-the-art candidates) and provide our novel version of a Bi-directional composition function for existing architectures. In addition, we evaluate 18 different combinations of word-level encoding and sentence-level encoding functions. Based on these results, we show that our Bi-directional model outperforms all other models and the highest accuracy result among our models is the one based on the combination of FeedForward Neural Network and the Stack-augmented Parser-Interpreter Neural Network (82.60% prediction accuracy). We argue that our prediction models recommended for both demographics characteristics examined in this study can achieve high accuracy. This is additionally also the first time a sound methodological approach toward improving accuracy for learner demographics classification on MOOCs was proposed.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


2018 ◽  
Vol 12 (04) ◽  
pp. 481-500 ◽  
Author(s):  
Naifan Zhuang ◽  
The Duc Kieu ◽  
Jun Ye ◽  
Kien A. Hua

With the growth of crowd phenomena in the real world, crowd scene understanding is becoming an important task in anomaly detection and public security. Visual ambiguities and occlusions, high density, low mobility, and scene semantics, however, make this problem a great challenge. In this paper, we propose an end-to-end deep architecture, convolutional nonlinear differential recurrent neural networks (CNDRNNs), for crowd scene understanding. CNDRNNs consist of GoogleNet Inception V3 convolutional neural networks (CNNs) and nonlinear differential recurrent neural networks (RNNs). Different from traditional non-end-to-end solutions which separate the steps of feature extraction and parameter learning, CNDRNN utilizes a unified deep model to optimize the parameters of CNN and RNN hand in hand. It thus has the potential of generating a more harmonious model. The proposed architecture takes sequential raw image data as input, and does not rely on tracklet or trajectory detection. It thus has clear advantages over the traditional flow-based and trajectory-based methods, especially in challenging crowd scenarios of high density and low mobility. Taking advantage of CNN and RNN, CNDRNN can effectively analyze the crowd semantics. Specifically, CNN is good at modeling the semantic crowd scene information. On the other hand, nonlinear differential RNN models the motion information. The individual and increasing orders of derivative of states (DoS) in differential RNN can progressively build up the ability of the long short-term memory (LSTM) gates to detect different levels of salient dynamical patterns in deeper stacked layers modeling higher orders of DoS. Lastly, existing LSTM-based crowd scene solutions explore deep temporal information and are claimed to be “deep in time.” Our proposed method CNDRNN, however, models the spatial and temporal information in a unified architecture and achieves “deep in space and time.” Extensive performance studies on the Violent-Flows, CUHK Crowd, and NUS-HGA datasets show that the proposed technique significantly outperforms state-of-the-art methods.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Tao Chen ◽  
Mingfen Wu ◽  
Hexi Li

Abstract The automatic extraction of meaningful relations from biomedical literature or clinical records is crucial in various biomedical applications. Most of the current deep learning approaches for medical relation extraction require large-scale training data to prevent overfitting of the training model. We propose using a pre-trained model and a fine-tuning technique to improve these approaches without additional time-consuming human labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from Transformers (BERT), an approach for pre-training a model on large-scale unstructured text. We then combine BERT with a one-dimensional convolutional neural network (1d-CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments on three datasets, namely the BioCreative V chemical disease relation corpus, traditional Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus, show that the proposed approach achieves state-of-the-art results (giving a relative improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a traditional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/MedicalRelationExtraction.


2020 ◽  
Vol 36 (15) ◽  
pp. 4323-4330 ◽  
Author(s):  
Cong Sun ◽  
Zhihao Yang ◽  
Leilei Su ◽  
Lei Wang ◽  
Yin Zhang ◽  
...  

Abstract Motivation The biomedical literature contains a wealth of chemical–protein interactions (CPIs). Automatically extracting CPIs described in biomedical literature is essential for drug discovery, precision medicine, as well as basic biomedical research. Most existing methods focus only on the sentence sequence to identify these CPIs. However, the local structure of sentences and external biomedical knowledge also contain valuable information. Effective use of such information may improve the performance of CPI extraction. Results In this article, we propose a novel neural network-based approach to improve CPI extraction. Specifically, the approach first employs BERT to generate high-quality contextual representations of the title sequence, instance sequence and knowledge sequence. Then, the Gaussian probability distribution is introduced to capture the local structure of the instance. Meanwhile, the attention mechanism is applied to fuse the title information and biomedical knowledge, respectively. Finally, the related representations are concatenated and fed into the softmax function to extract CPIs. We evaluate our proposed model on the CHEMPROT corpus. Our proposed model is superior in performance as compared with other state-of-the-art models. The experimental results show that the Gaussian probability distribution and external knowledge are complementary to each other. Integrating them can effectively improve the CPI extraction performance. Furthermore, the Gaussian probability distribution can effectively improve the extraction performance of sentences with overlapping relations in biomedical relation extraction tasks. Availability and implementation Data and code are available at https://github.com/CongSun-dlut/CPI_extraction. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Peng Su ◽  
Gang Li ◽  
Cathy Wu ◽  
K. Vijay-Shanker

AbstractSignificant progress has been made in applying deep learning on natural language processing tasks recently. However, deep learning models typically require a large amount of annotated training data while often only small labeled datasets are available for many natural language processing tasks in biomedical literature. Building large-size datasets for deep learning is expensive since it involves considerable human effort and usually requires domain expertise in specialized fields. In this work, we consider augmenting manually annotated data with large amounts of data using distant supervision. However, data obtained by distant supervision is often noisy, we first apply some heuristics to remove some of the incorrect annotations. Then using methods inspired from transfer learning, we show that the resulting models outperform models trained on the original manually annotated sets.


2021 ◽  
Author(s):  
Qihang Wang ◽  
Feng Liu ◽  
Guihong Wan ◽  
Ying Chen

AbstractMonitoring the depth of unconsciousness during anesthesia is useful in both clinical settings and neuroscience investigations to understand brain mechanisms. Electroencephalogram (EEG) has been used as an objective means of characterizing brain altered arousal and/or cognition states induced by anesthetics in real-time. Different general anesthetics affect cerebral electrical activities in different ways. However, the performance of conventional machine learning models on EEG data is unsatisfactory due to the low Signal to Noise Ratio (SNR) in the EEG signals, especially in the office-based anesthesia EEG setting. Deep learning models have been used widely in the field of Brain Computer Interface (BCI) to perform classification and pattern recognition tasks due to their capability of good generalization and handling noises. Compared to other BCI applications, where deep learning has demonstrated encouraging results, the deep learning approach for classifying different brain consciousness states under anesthesia has been much less investigated. In this paper, we propose a new framework based on meta-learning using deep neural networks, named Anes-MetaNet, to classify brain states under anesthetics. The Anes-MetaNet is composed of Convolutional Neural Networks (CNN) to extract power spectrum features, and a time consequence model based on Long Short-Term Memory (LSTM) Networks to capture the temporal dependencies, and a meta-learning framework to handle large cross-subject variability. We used a multi-stage training paradigm to improve the performance, which is justified by visualizing the high-level feature mapping. Experiments on the office-based anesthesia EEG dataset demonstrate the effectiveness of our proposed Anes-MetaNet by comparison of existing methods.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2270 ◽  
Author(s):  
Kai Yang ◽  
Zhitao Huang ◽  
Xiang Wang ◽  
Xueqiong Li

Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.


Sign in / Sign up

Export Citation Format

Share Document