PS02.057: INDUCTION OF APOPTOSIS IN ESOPHAGEAL ADENOCARCINOMA CELLS BY CURCUMIN

2018 ◽  
Vol 31 (Supplement_1) ◽  
pp. 136-137
Author(s):  
René Thieme ◽  
Florian Michiels ◽  
Luisa Maurer ◽  
Albrecht Hoffmeister ◽  
Uwe Eichfeld ◽  
...  

Abstract Background Curcumin naturally occurring in curry powder from Curcuma longa is an anti-inflammatory and anti-proliferative agent. It represses NFκB activation and induces apoptosis in cancer cells. Because, inflammation favours the onset of an intestinal metaplasia in esophageal squamous epithelial cells and esophageal carcinoma cells, a reduction of such processes may contribute to establish a stable disease and/or sensitization for chemotherapeutic approaches. Methods Curcumin receptivity was investigated in metaplastic (CP-A), dysplastic (CP-B), adenocarcinoma (OE19, OE33), and esophageal fibroblast (FFE3) cell lines, which were treated with 10 or 25 μM Curcumin for 48h or 72h. Response to Curcumin was measured by proliferation assays as well as by induction of apoptosis and Akt activation by western blot analyses. Results The EAC cell lines OE33 and OE19 show a decrease of proliferation with raising curcumin concentration with an IC50 of 9.6 and 14.8 μM, respectively. While the metaplastic and dysplastic cell lines showed a comparable IC50 of 7.7 and 11.6 μM to the EAC cell lines, the FEF3 cell showed a higher IC50 of approx. 20μM. The phosphorylation of Akt was decreased and apoptosis was induced, showing cleaved PARP, when treated with 25μM curcumin after 48h and 72h. Conclusion Metaplastic, dysplastic and EAC cells show a higher receptivity to curcumin than esophageal fibroblasts cells. This constrains the NFκB activation and its contribution in the manifestation of the Barrett's esophagus. The usage of curcumin to generate an anti-inflammatory microenvironment will potentially help to develop a stable disease or to reverse the development of the Barrett's esophagus. Disclosure All authors have declared no conflicts of interest.

2021 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Manuel Pera ◽  
Marta Garrido ◽  
Gabriel Gil ◽  
Matteo Fassan ◽  
Marta Climent ◽  
...  

Abstract   Cardiac-type epithelium has been proposed as an intermediate stage between normal squamous epithelium and intestinal metaplasia in the development of Barrett’s esophagus. Deregulation of certain miRNAs and their effects on CDX2 expression might contribute to the intestinalization process of cardiac-type epithelium. The aim of this study was to identify miRNAs differentially expressed between CDX2 positive and negative glands of Barrett’s esophagus and to examine the function of specific miRNAs on the regulation of CDX2. Methods miRNA expression profiling using OpenArrayTM analysis in microdissected cardiac-type glands with and without fully CDX2 expression was performed in biopsies from patients who developed cardiac-type epithelium in the remnant esophagus after esophagectomy. Data were validated using real-time PCR in esophageal adenocarcinoma cell lines and in situ and real-time PCR miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples. The effect of miR-24-3p precursor transfection on CDX2 expression was assessed in the esophageal adenocarcinoma cell lines FLO-1 and KYAE-1. Results CDX2 positive glands were characterized by an unique miRNA profile with a significant downregulation of miR-24-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-133a-3p, miR-30a-5p, miR-638, miR-625-3p, miR-1255b-1, miR-1260a and upregulation of miR-590 (Figure 1A). miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three bioinformatics algorithms, and this was confirmed in esophageal adenocarcinoma cell lines (Figure 1C). Furthermore, miR-24-3p expression negatively correlates with CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization (Figure 1B). Conclusion These results imply that miRNA-24-3p directly targets CDX2, and downregulation of miRNA-24-3p is associated with the acquisition of an intestinal phenotype in cardiac-type epithelium.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4606-4606
Author(s):  
Shabirul Haque ◽  
Bukhtawar Waqas ◽  
Hyunjoo Lee ◽  
Piers EM Patten ◽  
Jonathan E Kolitz ◽  
...  

Abstract Abstract 4606 Curcumin is a natural phenolic compound within the spice, Curcuma longa. It has noted anti-inflammatory effects, in large part due to its potent suppressive effect on the NF-kB signaling pathway. AID is a NF-kB-regulated enzyme, essential for B cell Ig class switch recombination and somatic hypermutation and recently shown to promote oncogenic transformation within both B cell and non-B cell lineages. This study has examined the effect of curcumin on the division-linked upregulation of AID protein and mRNA within several human B cell populations: in vitro-activated normal and CLL B lymphocytes and the AID-positive, pre-germinal center B cell line, CL-01. CFSE-labeled, IgM+ human B2 cells isolated from spleen/tonsil were pre-activated for 4–5 days with stimuli likely encountered in sites of inflammation, i.e. limiting surrogate C3dg-coated antigen (anti-IgM: anti-CD21: dextran) + IL-4 + BAFF. Peripheral blood B-CLL cells were activated with TLR-9 ligand, ODN-2006, + IL-15. Curcumin at doses from 6 to 50 μ M, and parallel DMSO vehicle controls, were pulsed into dividing B cell cultures (day 3, 4, or 5 of activation), and AID mRNA and protein assessed after 1 to 2 days. In experiments with CL-01 B cells, the kinetics of curcumin-induced AID suppression was further analyzed. Messenger RNA was monitored by both quantitative and qualitative RT-PCR; AID protein was assessed by two-color flow cytometry of CFSE-labeled cells and immunoblotting. The above experiments revealed that curcumin can significantly down-regulate AID mRNA and protein, in dose dependent fashion within each of the above B cell populations. Following a 16h pulse of curcumin (25 μ M), AID mRNA within CL-01 cells was inhibited by 60% (p=0.001), and accompanied by ~ 60% decrease in AID protein. Within cultures of replicating normal human B lymphocytes, a similar pulse of curcumin reduced total culture AID mRNA by an average of 70% in 3 experiments. AID protein in blasts representing 3–4 divisions was reduced by 79%, and in those representing 1–2 divisions by 58%, within a representative experiment. AID mRNA was evident within all in vitro-activated B-CLL clones tested (total = 6 clones at the time of submission). This was significantly reduced by a 15–24 hr pulse with curcumin (20-25 μ M): 42% inhibition (p=0.02)). The inhibitory effects of curcumin were evident in both IgHV mutated and unmutated clones. Within stimulated B-CLL assessed for AID protein (4 total clones, of which 2 were positive), a 20 hr pulse of curcumin at 40 μ M and 20 μ M reduced AID expression in one clone by 80% and 40%, respectively. In the other clone, a maximal tested dose of 20 μ M curcumin reduced AID protein by only 12%. Suppression of AID mRNA in the CL-01 cell line was noted as soon as 3 hours following exposure to curcumin and was preceded by inhibition of NF-kB activation, both baseline and BAFF-induced. The latter was determined through monitoring intracellular levels of phospho-p65-Ser(529) – an active phosphorylated form of NF-kB RelA. Taken together, these findings suggest that NF-kB- and AID-suppressing curcumin may be useful in reducing the risk of malignant transformation and B-CLL progression into more malignant subclones, as well as treating B cell autoimmune diseases driven by pathogenic, somatically-mutated IgG autoantibodies. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 295 (3) ◽  
pp. G470-G478 ◽  
Author(s):  
Hui Ying Zhang ◽  
Xi Zhang ◽  
Xi Chen ◽  
Deena Thomas ◽  
Kathy Hormi-Carver ◽  
...  

We hypothesized that, in esophageal squamous epithelial cells, there are differences among individuals in the signal transduction pathways activated by acid reflux that might underlie the development of Barrett's esophagus. To explore that hypothesis, we immortalized nonneoplastic, esophageal squamous cells from patients with gastroesophageal reflux disease (GERD) with (NES-B3T) and without (NES-G2T) Barrett's esophagus and used those cells to study acid effects on MAPK proteins. During endoscopy in patients with GERD with and without Barrett's esophagus, we took biopsy specimens from the distal squamous esophagus to study MAPK proteins before and after esophageal perfusion with 0.1 N HCl. We used immunoblotting and Western blotting to study MEK1/2 phosphorylation at two activating sites (serines 217/221), MEK1 phosphorylation at an inhibitory site (threonine 286), and MEK1/2 activity. After acid exposure, both cell lines exhibited increased MEK1/2 phosphorylation at the activating sites; the NES-B3T cells had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the NES-G2T cells showed an acid-induced increase in MEK1/2 activity. Similarly, in the squamous epithelium of patients with GERD with and without Barrett's esophagus, acid perfusion increased MEK1/2 phosphorylation at the activating sites in both patient groups; the Barrett's patients had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the patients without Barrett's demonstrated an acid-induced increase in ERK1/2 phosphorylation. In esophageal squamous cell lines and biopsies from patients with GERD with and without Barrett's esophagus, we have found differences in MAPK pathways activated by acid exposure. We speculate that these differences might underlie the development of Barrett's metaplasia.


2014 ◽  
Vol 12 (11) ◽  
pp. 1832-1839.e6 ◽  
Author(s):  
Natalia Khalaf ◽  
Theresa Nguyen ◽  
David Ramsey ◽  
Hashem B. El–Serag

Author(s):  
Gabriel Gil-Gómez ◽  
Matteo Fassan ◽  
Lara Nonell ◽  
Marta Garrido ◽  
Marta Climent ◽  
...  

Summary Background Cardiac-type epithelium has been proposed as the precursor of intestinal metaplasia in the development of Barrett’s esophagus. Dysregulation of microRNAs (miRNAs) and their effects on CDX2 expression may contribute to intestinalization of cardiac-type epithelium. The aim of this study was to examine the possible effect of specific miRNAs on the regulation of CDX2 in a human model of Barrett’s esophagus. Methods Microdissection of cardiac-type glands was performed in biopsy samples from patients who underwent esophagectomy and developed cardiac-type epithelium in the remnant esophagus. OpenArray™ analysis was used to compare the miRNAs profiling of cardiac-type glands with negative or fully positive CDX2 expression. CDX2 was validated as a miR-24 messenger RNA target by the study of CDX2 expression upon transfection of miRNA mimics and inhibitors in esophageal adenocarcinoma cell lines. The CDX2/miR-24 regulation was finally validated by in situ miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples of Barrett’s esophagus. Results CDX2 positive glands were characterized by a unique miRNA profile with a significant downregulation of miR-24-3p, miR-30a-5p, miR-133a-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-625-3p, miR-638, miR-1255b-1, and miR-1260a, as well as upregulation of miR-590-5p. miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three databases and confirmed in esophageal adenocarcinoma cell lines. Furthermore, miR-24-3p expression showed a negative correlation with the expression of CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization. Conclusion These results showed that miRNA-24-3p regulates CDX2 expression, and the downregulation of miRNA-24-3p was associated with the acquisition of the intestinal phenotype in esophageal cardiac-type epithelium.


Sign in / Sign up

Export Citation Format

Share Document