Diagnostic usefulness of passive leg raising test for detection of heart failure with preserved ejection fraction compared to cycle ergometer exercise (invasive hemodynamic study)

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S.J Hwang ◽  
M.G Kang ◽  
K.H Kim ◽  
H.W Park ◽  
J.S Koh ◽  
...  

Abstract Background Invasive diastolic stress test using cycle ergometer is gold standard for diagnosis of heart failure with preserved ejection fraction (HFpEF) by demonstrating elevation of left ventricular end diastolic pressure (LVEDP) during exercise. It is well known that passive leg raising increases preload and augments LVEDP in HFpEF patients. However correlation between passive leg raising induced increase of LVEDP and cycle ergometer exercise induced increase of LVEDP is not well established. Therefore we investigated whether passive leg raising test could substitute cycle exercise test for diagnosis of HFpEF. Method Forty-five patients with unexplained dyspnea and ejection fraction >50% underwent invasive exercise test. After measuring baseline LVEDP in supine position using pigtail catheter through radial artery approach, LVEDP during passive leg raising was evaluated. Then exercise LVEDP was measured after 3 minutes of 20 watt supine cycle ergometer exercise. Patients with normal resting LVEDP <16mmHg were enrolled. Patients with cycle ergometer exercise LVEDP >26mmHg were classified as HFpEF and exercise LVEDP <26mmHg were defined as noncardiac dyspnea. Results Among 45 patients with unexplained dyspnea with preserved EF, 30 patients with ergometer exercise LVEDP >26mmHg were grouped as HFpEF and 15 patients with exercise LVEDP <26mmHg grouped as noncardiac dyspnea (NCD). Resting LVEDP was higher in HFpEF than NCD (14±2mmHg vs 11±3mmHg, P=0.01) but there was substantial overlap (figure 1) showing poor differentiation power of resting LVEDP. Passive leg raising increased LVEDP in both HFpEF and NCD but this was more marked in HFpEF group than in NCD group with minimal overlap (24±4mmHg vs 17±2mmHg, P<0.001) (figure 2). Passive leg raising LVEDP was well correlated with cycle ergometer exercise LVEDP (R2=0.60, P<0.01). The best cutoff value for passive leg raising LVEDP to detect HFpEF was 20mmHg (sensitivity, 0.87; specificity, 1.00), giving an area under the curve of 0.93 (95% confidence interval, 0.80 to 0.99). Positive predictive value of passive leg raising LVEDP >20mmHg for diagnosis of HFpEF was 96% and negative predictive value was 77%. Conclusion Passive leg raising induced augmentation of left ventricular end diastolic pressure (LVEDP) was well correlated with cycle exercise induced elevation of LVEDP in HFpEF patients. Passive leg raising test may be used for detecting HFpEF with good accuracy in substitution for cycle ergometer exercise test. Funding Acknowledgement Type of funding source: None

2019 ◽  
Vol 36 (7) ◽  
pp. 1263-1272 ◽  
Author(s):  
Antonio Amador Calvilho Júnior ◽  
Jorge Eduardo Assef ◽  
David Le Bihan ◽  
Rodrigo Bellio de Mattos Barretto ◽  
Antonio Tito Paladino Filho ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Michinari Hieda ◽  
Erin Howden ◽  
Shigeki Shibata ◽  
Takashi Tarumi ◽  
Justin Lawley ◽  
...  

The beat-to-beat dynamic Starling mechanism (DSM), the dynamic modulation of stroke volume (SV) because of breath-by-breath changes in left-ventricular end-diastolic pressure (LVEDP), reflects ventricular-arterial coupling. The purpose of this study was to test whether the LVEDP-SV relationship remained impaired in heart failure with preserved ejection fraction (HFpEF) patients after normalization of LVEDP. Right heart catheterization and model-flow analysis of the arterial pressure waveform were performed while preload was manipulated using lower-body negative pressure to alter LVEDP. The DSM was compared at similar levels of LVEDP between HFpEF patients ( n = 10) and age-matched healthy controls ( n = 12) (HFpEF vs. controls: 10.9 ± 3.8 vs. 11.2 ± 1.3 mmHg, P = 1.00). Transfer function analysis between diastolic pulmonary artery pressure (PAD) representing dynamic changes in LVEDP vs. SV index was applied to obtain gain and coherence of the DSM. The DSM gain was significantly lower in HFpEF patients than in the controls, even at a similar level of LVEDP (0.46 ± 0.19 vs. 0.99 ± 0.39 ml·m−2·mmHg−1, P = 0.0018). Moreover, the power spectral density of PAD, the input variability, was greater in the HFpEF group than the controls (0.75 ± 0.38 vs. 0.28 ± 0.26 mmHg2, P = 0.01). Conversely, the power spectral density of SV index, the output variability, was not different between the groups ( P = 0.97). There was no difference in the coherence, which confirms the reliability of the linear transfer function between the two groups (0.71 ± 0.13 vs. 0.77 ± 0.19, P = 0.87). The DSM gain in HFpEF patients is impaired compared with age-matched controls even at a similar level of LVEDP, which may reflect intrinsic LV diastolic dysfunction and incompetence of ventricular-arterial coupling. NEW & NOTEWORTHY The beat-to-beat dynamic Starling mechanism (DSM), the dynamic modulation of stroke volume because of breath-by-breath changes in left-ventricular end-diastolic pressure (LVEDP), reflects ventricular-arterial coupling. Although the DSM gain is impaired in heart failure with preserved ejection fraction (HFpEF) patients, it is not clear whether this is because of higher LVEDP or left-ventricular diastolic dysfunction. The DSM gain in HFpEF patients is severely impaired, even at a similar level of LVEDP, which may reflect intrinsic left-ventricular diastolic dysfunction.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Anett Jannasch ◽  
Antje Schauer ◽  
Virginia Kirchhoff ◽  
Runa Draskowsi ◽  
Claudia Dittfeld ◽  
...  

Background: The novel MuRF1 inhibitor EMBL205 attenuates effectively developing skeletal muscle atrophy and dysfunction in animals with heart failure with preserved ejection fraction (HFpEF, ZSF1 rat model). The impact of EMBL205 on myocardial function in the HFpEF setting is currently unknown and was evaluated in ZSF1 rats. Methods: 20 wks-old female obese ZSF1 rats received EMBL205 (12 wks, conc. of 0.1% in chow; HFpEF-EMBL205). Age-matched untreated lean (con) and obese (HFpEF) ZSF1 rats served as controls. At 32 wks of age left ventricular (LV)-, aortic valve (AV) function and LV end diastolic pressure (LVEDP) was determined by echocardiography and invasive hemodynamic measurements. LV expression of collagen 1A (Col1A) and 3A (Col3A) was assessed by qRT-PCR, MMP2 expression was obtained by zymography and perivascular fibrosis was quantified in histological sections. Results: Development of HFpEF in ZSF1 obese animals is associated with cardiac enlargement and hypertrophy, as evident by increased myocardial weight, an increase in end diastolic volume (EDV) and LV anterior and posterior wall diameters. Diastolic LV-function is disturbed with elevation of E/é, an increased LVEDP and a preserved LV ejection fraction. AV peak velocity and peak gradient are significantly increased and AV opening area (AVA) significantly decreased. Col1A and Col3A expression are increased in HFpEF animals. EMBL205 treatment results in a significant reduction of myocardial weight and a trend towards lower EDV compared to HFpEF group. EMBL205 attenuates the increase in E/é, LVEDP, AV peak gradient and the decrease of AVA. EMBL205 significantly reduces Col3A expression and a trend for Col1A expression is seen. Increased perivascular fibrosis and MMP2 expression in HFpEF is extenuated by EMBL205 treatment (table 1). Conclusions: Application of EMBL205 attenuated the development of pathological myocardial alterations associated with HFpEF in ZSF1rats due to antifibrotic effects.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Nakata ◽  
A Goda ◽  
K Takeuchi ◽  
H Kikuchi ◽  
T Inami ◽  
...  

Abstract Background Exercise-induced elevation of pulmonary arterial wedge pressure (PAWP) may show preclinical or exercise-induced left ventricular diastolic dysfunction. Invasive hemodynamic assessment during provocative maneuvers, like exercise and volume challenge, in these patients allows greater sensitivity to diagnose or exclude HFpEF. The aim of this study was to examine how the leg raise, which is a simple way to increase preload, can detect exercise-induced PAWP elevation. Methods Four hundred seventy-nine patients (60±14y.o, mean pulmonary arterial pressure (PAP) 19mmHg, PAWP 8mmHg, CTEPH /IPAH/CTD-PH/SOB unknown reason: 357/56/38/28pts) with near-normal PAP and normal PAWP at rest underwent symptom-limited exercise test using supine cycle ergometer with right heart catheter. Exercise-induced elevation in PAWP of over 20mmHg was defined as exercise-induced elevation group. Results ΔPAWP (after leg raise - rest) in the exercise-induced elevation group was significantly higher (6.0±4.1 vs. 2.7±3.9mmHg, p<0.001, in the older (age≥60y.o) group (n=276); 3.4±3.5 vs. 1.9±3.4mmHg, p<0.001, in the younger (age<60y.o) group (n=203)) than that in the non-elevation group after legs raise for cycle ergometer exercise. The area under the ROC curve for ΔPAWP was 0.72 (95% CI: 0.65–0.78) in the older and 0.64 (95% CI: 0.53–0.75) in the younger. In the older, the cut-off value for detect exercise-induced PAWP elevation of ΔPAWP was 4mmHg, with 72% sensitivity and 58% specificity. On the other hand, in the younger, the cut-off value was 3mmHg, with 69% sensitivity and 59% specificity. Conclusion Leg raise can easily detect occult left ventricular diastolic dysfunction. Funding Acknowledgement Type of funding source: None


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Katsuji Inoue ◽  
Toshihiko Asanuma ◽  
Kasumi Masuda ◽  
Daisuke Sakurai ◽  
Masamichi Oka ◽  
...  

Introduction: Afterload mismatch is considered as a cause of acute decompensation in patients with heart failure with preserved ejection fraction (HFPEF). However, behaviors of left atrium (LA) and ventricle (LV) to afterload increase have not been fully elucidated. We investigated how LA and LV acted to acute increase in afterload using speckle tracking echocardiography. Methods: Serial echocardiographic and hemodynamic data were acquired in 10 dogs during banding of the descending aorta (AoB). LA pressure was measured by a micromanometer via left pulmonary vein. As shown in Figure, peak negative strain during LA contraction and strain change during LA relaxation (early reservoir strain) and that during systole (late reservoir strain) were generated by simultaneous acquisition of LA longitudinal strain and volume. Pressure-strain curve showed 2 loops (A-loop, V-loop) and areas in A-loop and V-loop were computed as the work during active contraction and relaxation (A-work) and that during passive filling and emptying (V-work), respectively. Results: AoB increased LV systolic pressure by about 60 mmHg, mean LA pressure (3.8±1.3 vs. 7.1±2.0 mmHg) and LV end-diastolic pressure (4.5±1.7 vs. 10.7±4.0 mmHg, all p < 0.01). LV global circumferential strain decreased (-18.8±3.5 vs. -13.2±3.5%, p < 0.01) but LV stroke volume was maintained (8.4±2.3 vs. 9.6±3.6 ml). LA peak negative strain (-2.9±2.3 vs. -9.8±4.0%, p < 0.01) and early reservoir strain (3.4±1.1 vs. 7.8±2.6%, p < 0.01) increased substantially by AoB, but late reservoir function did not change (9.3±3.5 vs. 6.1±2.0%). A-work significantly increased (3.2±2.0 to 19.2±15.1 mmHg %, p < 0.01), while V-work did not change (13.3±7.1 vs. 13.6±8.0 mmHg %). Conclusions: During aortic banding, LA contraction, early reservoir function and thereby external work during the phase increased as a compensation to LV dysfunction. The failure of this mechanism may lead to decompensation in HFPEF.


2008 ◽  
Vol 88 (10) ◽  
pp. 1188-1195 ◽  
Author(s):  
Sandra A Billinger ◽  
Benjamin Y Tseng ◽  
Patricia M Kluding

Background Assessment of peak oxygen consumption (V̇o2peak) using traditional modes of testing such as treadmill or cycle ergometer can be difficult in individuals with stroke due to balance deficits, gait impairments, or decreased coordination. Objective The purpose of this study was to quantitatively assess the validity and feasibility of a modified exercise test using a total-body recumbent stepper (mTBRS-XT) in individuals after stroke. Design A within-subject design, with a sample of convenience, was used. Participants Eleven participants (7 male, 4 female) with a mean of 40.1 months (SD=32.7) after stroke, a mean age of 60.9 years (SD=12.0), and mild to severe lower-extremity Fugl-Myer test scores (range=13–34) completed the study. Methods Participants performed 2 maximal-effort graded exercise tests on separate days using the mTBRS-XT and a cycle ergometer exercise protocol to assess cardiorespiratory fitness. Measurements of V̇o2peak and peak heart rate (peak HR) were obtained during both tests. Results A strong relationship existed between the mTBRS-XT and the cycle ergometer exercise test for V̇o2peak and peak HR (r=.91 and .89, respectively). Mean V̇o2peak was significantly higher for the mTBRS-XT (16.6 mL×kg−1×min−1[SD=4.5]) compared with the cycle ergometer exercise protocol (15.4 mL×kg−1×min−1 [SD=4.5]). All participants performed the mTBRS-XT. One individual with severe stroke was unable to pedal the cycle ergometer. No significant adverse events occurred. Conclusion The mTBRS-XT may be a safe, feasible, and valid exercise test to obtain measurements of V̇o2peak in people with stroke. Health care professionals may use the mTBRS-XT to prescribe aerobic exercise based on V̇o2peak values for individuals with mild to severe deficits after stroke.


1997 ◽  
Vol 83 (3) ◽  
pp. 948-957 ◽  
Author(s):  
Kenneth R. Turley ◽  
Jack H. Wilmore

Turley, Kenneth R., and Jack H. Wilmore. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J. Appl. Physiol. 83(3): 948–957, 1997.—This study was conducted to determine whether submaximal cardiovascular responses at a given rate of work are different in children and adults, and, if different, what mechanisms are involved and whether the differences are exercise-modality dependent. A total of 24 children, 7 to 9 yr old, and 24 adults, 18 to 26 yr old (12 males and 12 females in each group), participated in both submaximal and maximal exercise tests on both the treadmill and cycle ergometer. With the use of regression analysis, it was determined that cardiac output (Q˙) was significantly lower ( P ≤ 0.05) at a given O2 consumption level (V˙o 2, l/min) in boys vs. men and in girls vs. women on both the treadmill and cycle ergometer. The lower Q˙ in the children was compensated for by a significantly higher ( P ≤ 0.05) arterial-mixed venous O2difference to achieve the same or similarV˙o 2. Furthermore, heart rate and total peripheral resistance were higher and stroke volume was lower in the children vs. in the adult groups on both exercise modalities. Stroke volume at a given rate of work was closely related to left ventricular mass, with correlation coefficients ranging from r = 0.89–0.92 and r = 0.88–0.93 in the males and females, respectively. It was concluded that submaximal cardiovascular responses are different in children and adults and that these differences are related to smaller hearts and a smaller absolute amount of muscle doing a given rate of work in the children. The differences were not exercise-modality dependent.


2015 ◽  
Vol 309 (10) ◽  
pp. H1648-H1654 ◽  
Author(s):  
Sara Leite ◽  
Sara Rodrigues ◽  
Marta Tavares-Silva ◽  
José Oliveira-Pinto ◽  
Mohamed Alaa ◽  
...  

Myocardial stiffness and upward-shifted end-diastolic pressure-volume (P-V) relationship (EDPVR) are the key to high filling pressures in heart failure with preserved ejection fraction (HFpEF). Nevertheless, many patients may remain asymptomatic unless hemodynamic stress is imposed on the myocardium. Whether delayed relaxation induced by pressure challenge may contribute to high end-diastolic pressure (EDP) remains unsettled. Our aim was to assess the effect of suddenly imposed isovolumic afterload on relaxation and EDP, exploiting a highly controlled P-V experimental evaluation setup in the ZSF1 obese rat (ZSF1 Ob) model of HFpEF. Twenty-week-old ZSF1 Ob ( n = 12), healthy Wistar-Kyoto rats (WKY, n = 11), and hypertensive ZSF1 lean control rats (ZSF1 Ln, n = 10) underwent open-thorax left ventricular (LV) P-V hemodynamic evaluation under anesthesia with sevoflurane. EDPVR was obtained by inferior vena cava occlusions to assess LV ED chamber stiffness constant β, and single-beat isovolumic afterload acquisitions were obtained by swift occlusions of the ascending aorta. ZSF1 Ob showed increased ED stiffness, delayed relaxation, as assessed by time constant of isovolumic relaxation (τ), and elevated EDP with normal ejection fraction. Isovolumic afterload increased EDP without concomitant changes in ED volume or heart rate. In isovolumic beats, relaxation was delayed to the extent that time for complete relaxation as predicted by 3.5 × monoexponentially derived τ (τexp) exceeded effective filling time. EDP elevation correlated with reduced time available to relax, which was the only independent predictor of EDP rise in multiple linear regression. Our results suggest that delayed relaxation during pressure challenge is an important contributor to lung congestion and effort intolerance in HFpEF.


Sign in / Sign up

Export Citation Format

Share Document