scholarly journals Inverted takotsubo syndrome complicated with cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation in a patient with bilateral pheochromocytoma: a case report

2020 ◽  
Vol 4 (2) ◽  
pp. 1-5
Author(s):  
Bebiana Manuela Monteiro Faria ◽  
João Português ◽  
Roberto Roncon-Albuquerque Jr ◽  
Rodrigo Pimentel

Abstract Background Takotsubo syndrome (TS) is characterized by a transient left ventricular (LV) dysfunction and rarely presents with cardiogenic shock (CS). Inverted TS (ITS) is a rare entity associated with the presence of a pheochromocytoma. Case summary We present a case of a young woman was admitted to the emergency department due to intense headache, chest discomfort, palpitations, and breathlessness. An ITS secondary to a pheochromocytoma crisis presenting with CS was diagnosed. The patient was managed with veno-arterial extracorporeal membrane oxygenation, until recovery of LV function. On the 35th day of hospitalization, open bilateral adrenalectomy was performed. Discussion Takotsubo syndrome patients presenting with CS are challenging and clinicians should be aware of underlying causes. Specific triggers such as pheochromocytoma should systematically be considered particularly if ITS was presented. Extracorporeal life support devices could provide temporary mechanical circulatory support in patients with TS on refractory CS and help to manage complex cases with TS due to pheochromocytoma.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Petr Ostadal ◽  
Mikulas Mlcek ◽  
Svitlana Strunina ◽  
Matej Hrachovina ◽  
Andreas Kruger ◽  
...  

Introduction: Veno-arterial extracorporeal life support (ECLS) is increasingly used for the therapy of rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly deteriorates left ventricular (LV) performance. Recently, new ECG-synchronized pulsatile cardiac assist system was introduced that offers full circulatory support with increased diastolic and decreased systolic extracorporeal flow. The aim of the present study was to compare the parameters of LV function during standard continuous flow ECLS support and ECG-synchronized pulsatile flow ECLS in cardiogenic shock. Methods: Ten female swine (body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock with signs of tissue hypoperfusion was induced by global myocardial hypoxia. Hemodynamic and cardiac performance parameters were then measured at different levels of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter and a LV pressure-volume loop catheter. Results: Myocardial hypoxia resulted in a decline in mean (±SD) cardiac output to 2.3±1.2 L/min, systolic blood pressure to 61±7 mmHg and LV ejection fraction (EF) to 21±7%. Synchronized pulsatile flow was associated with significant reduction of LV end-systolic volume (ESV), increase in LV stroke volume (SV), and higher EF at all ECLS flow levels in comparison with continuous ECLS flow (Figure 1). At selected ECLS flow levels, pulsatile flow reduced also LV end-diastolic pressure (EDP), end-diastolic volume (EDV), and systolic pressure (SP) (Figure 1). Conclusion: Our results indicate that ECG-synchronized pulsatile ECLS flow preserves LV function in comparison with standard continuous-flow ECLS in cardiogenic shock.


2018 ◽  
Vol 67 (03) ◽  
pp. 164-169
Author(s):  
Alexander Assmann ◽  
Udo Boeken ◽  
Stefan Klotz ◽  
Wolfgang Harringer ◽  
Andreas Beckmann

Background In context of the multidisciplinary German scientific guideline “Use of extracorporeal circulation (extracorporeal life support [ECLS]/extracorporeal membrane oxygenation) for cardiac and circulatory failure,” a nationwide survey should depict the status of organization and application of ECLS therapy in Germany. Methods Between June and October 2017, a standardized questionnaire consisting of 30 items related to ECLS therapy was sent to all German cardiosurgical departments, and all returned results were analyzed and evaluated. Results The return rate amounted to 92.9% (78 out of 84 departments). In the participating departments, ECLS therapy is subject to different responsibilities, and exhibits divergent processes and various ways for specialization of the involved personnel. This also concerns local application standards, such as cannulation strategies, anticoagulation management, left ventricular unloading, antiwatershed treatment, and weaning from circulatory support. Conclusion This nationwide survey underlines the necessity of a multidisciplinary guideline concerning ECLS therapy.


2018 ◽  
Author(s):  
Julian Villar ◽  
Stephen Ruoss ◽  
Richard HA ◽  
Joe Hsu

Extracorporeal membrane oxygenation (ECMO), also known as extracorporeal life support, is the practice of using circulatory assist devices and a gas exchange system to maintain sufficient tissue oxygen delivery, supplementing pulmonary and/or cardiac function in patients whose native physiology is too severely altered to be successfully supported solely by conventional life support techniques (eg, mechanical ventilation and inotropic and vasopressor drugs). ECMO should be considered in patients who are at a high risk of death due to a potentially reversible etiology of cardiopulmonary collapse. Indications for ECMO can be broadly divided into profound respiratory failure and/or cardiogenic shock. The indications include acute respiratory distress syndrome, heart failure, postoperative cardiogenic shock, and as an adjunct to cardiopulmonary resuscitation in patients with cardiac arrest. ECMO is currently experiencing a renaissance, and familiarity with its concepts is important for all critical care practitioners. This review contains 8 figures, 8 tables and 34 references Key Words: complications, equipment, indications, management basics, outcomes


Perfusion ◽  
2019 ◽  
Vol 35 (3) ◽  
pp. 246-254
Author(s):  
Mariusz Kowalewski ◽  
Giuseppe Raffa ◽  
Kamil Zieliński ◽  
Paolo Meani ◽  
Musab Alanazi ◽  
...  

Objective: While reported mortality rates on post-cardiotomy extracorporeal membrane oxygenation vary from center to center, impact of baseline surgical status (elective/urgent/emergency/salvage) on mortality is still unknown. Methods: A systematic search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement using PubMed/Medline databases until March 2018 using the keywords “postcardiotomy,” “cardiogenic shock,” “extracorporeal membrane oxygenation,” and “extracorporeal life support.” Relevant articles were scrutinized and included in the meta-analysis only if reporting in-hospital/30-day mortality and baseline surgical status. The correlations between mortality and percentage of elective/urgent/emergency cases were investigated. Inference analysis of baseline status and extracorporeal membrane oxygenation complications was conducted as well. Results: Twenty-two studies (conducted between 1993 and 2017) enrolling N = 2,235 post-cardiotomy extracorporeal membrane oxygenation patients were found. Patients were mostly of non-emergency status (65.2%). Overall in-hospital/30-day mortality event rate (95% confidence intervals) was 66.7% (63.3-69.9%). There were no differences in in-hospital/30-day mortality with respect to baseline surgical status in the subgroup analysis (test for subgroup differences; p = 0.406). Similarly, no differences between mortality in studies enrolling <50 versus ⩾50% of emergency/salvage cases was found: respective event rates were 66.9% (63.1-70.4%) versus 64.4% (57.3-70.8%); p = 0.525. Yet, there was a significant positive association between increasing percentage of emergency/salvage cases and rates of neurological complications (p < 0.001), limb complications (p < 0.001), and bleeding (p = 0.051). Incidence of brain death (p = 0.099) and sepsis (p = 0.134) was increased as well. Conclusion: Other factors than baseline surgical status may, to a higher degree, influence the mortality in patients treated with extracorporeal membrane oxygenation for post-cardiotomy cardiogenic shock. Baseline status, however, strongly influences the complication occurrence while on extracorporeal membrane oxygenation.


2018 ◽  
Vol 9 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Jan-Thorben Sieweke ◽  
Tobias Jonathan Pfeffer ◽  
Dominik Berliner ◽  
Tobias König ◽  
Maximiliane Hallbaum ◽  
...  

Introduction: Acute peripartum cardiomyopathy complicated by cardiogenic shock is a rare but life-threatening disease. A prolactin fragment is considered causal for the pathogenesis of peripartum cardiomyopathy. This analysis sought to investigate the role of early percutaneous mechanical circulatory support with micro-axial flow-pumps and/or veno-arterial extracorporeal membrane oxygenation in combination with the prolactin inhibitor bromocriptine in refractory cardiogenic shock complicating peripartum cardiomyopathy. Methods and results: In this single-centre analysis, five peripartum cardiomyopathy patients with refractory cardiogenic shock received mechanical circulatory support with either Impella CP microaxial pump only ( n=2) or in combination with veno-arterial extracorporeal membrane oxygenation ( n=3) in the setting of biventricular failure. All patients were mechanically ventilated. In all cases mechanical circulatory support was combined with bromocriptine therapy and early administration of levosimendan. All patients survived the acute phase of refractory cardiogenic shock. Mechanical circulatory support using a micro-axial pump allowed to significantly reduce catecholamine dosage. Remarkably, early left ventricular support with micro-axial flow-pumps resulted in myocardial recovery whereas delayed Impella (mechanical circulatory support) implantation was associated with poor left ventricular recovery. Conclusion: Mechanical circulatory support in patients with refractory cardiogenic shock complicating peripartum cardiomyopathy was associated with a 30-day survival of 100% and a favourable outcome. Notably, early left ventricular unloading combined with bromocriptine therapy was associated with left ventricular recovery. Therefore, an immediate transfer to a tertiary hospital experienced in mechanical circulatory support in combination with bromocriptine treatment seems indispensable for successful treatment of peripartum cardiomyopathy complicated by cardiogenic shock.


2020 ◽  
Author(s):  
Paolo Meani ◽  
Mikulas Mlcek ◽  
Mariusz Kowalewski ◽  
Giuseppe Maria Raffa ◽  
Federica Jiritano ◽  
...  

Abstract Background The use of peripheral veno-arterial extracorporeal life support (V-A ECLS) as a mechanical circulatory support in cardiogenic shock has increased dramatically over the last years. However, increased afterload may jeopardize left ventricle (LV) recovery and cause blood stasis and pulmonary edema. Therefore, several LV unloading techniques have been developed and used with limited understanding of the actual difference among them. The aim of the present study was to compare a trans-aortic suction device (Impella) and pulmonary artery (PA) drainage, for LV unloading and V-A ECLS management as well as efficacy in a porcine cardiogenic shock (CS) model Methods A dedicated CS model compared included twelve female swine (21± 1,8-weeks old and weighing 54,3 ± 4,6 kg) supported with V-A ECLS and randomized to Impella or PA-related LV drainage. LV unloading and end-organ perfusion were evaluated through the pulmonary artery catheter and the LV pressure/volume analysis. All the variables were collected at baseline, profound CS, V-A ECLS support with maximum flow and when Impella or PA cannula run on top. Results CS was successfully induced in all twelve animals. Impella resulted in a marked drop of LVEDV compared to a slight decrease in the PA cannula group, resulting in an overall stroke work (SW) and Pressure-Volume Area (PVA) reductions with both techniques. However, SW reduction was significant in the Impella CP group (VA ECMO 3998.82027.6 mmHg x mL vs VAECMO + Impella 1796.9±1033.9 mmHg x ml, p value 0,016), leading to a more consistent PVA reduction (Impella reduction 34,7% vs PA cannula reduction 9,7%) In terms of end organ perfusion, central and mixed O 2 saturation improved with V-A ECLS, and subsequently, remaining unchanged with either Impella or PA cannula as unloading strategy Conclusions Trans-aortic suction and PA drainage provided effective LV unloading during V-A ECLS while maintaining adequate end-organ perfusion. Trans-aortic suction device provides a greater LV unloading effect and reduces more effectively the total LV stroke work.


2007 ◽  
Vol 17 (S4) ◽  
pp. 104-115 ◽  
Author(s):  
David S. Cooper ◽  
Jeffrey P. Jacobs ◽  
Lisa Moore ◽  
Arabela Stock ◽  
J. William Gaynor ◽  
...  

AbstractMechanical circulatory support is an invaluable tool in the care of children with severe refractory cardiac and or pulmonary failure. Two forms of mechanical circulatory support are currently available to neonates, infants, and smaller children, namely extracorporeal membrane oxygenation and use of a ventricular assist device, with each technique having unique advantages and disadvantages. The intra-aortic balloon pump is a third form of mechanical support that has been successfully used in larger children, adolescents, and adults, but has limited applicability in smaller children. In this review, we discuss the current experiences with extracorporeal membrane oxygenation and ventricular assist devices in children with cardiac disease.A variety of forms of mechanical circulatory support are available for children with cardiopulmonary dysfunction refractory to conventional management. These devices require extensive resources, both human and economic. Extracorporeal membrane oxygenation can be effectively used in a variety of settings to provide support to critically-ill patients with cardiac disease. Careful selection of patients and timing of intervention remains challenging. Special consideration should be given to children with cardiac disease with regard to anatomy, physiology, cannulation, and circuit management. Even though exciting progress is being made in the development of ventricular assist devices for long-term mechanical support in children, extracorporeal membrane oxygenation remains the mainstay of mechanical circulatory support in children with complex anatomy, particularly those needing rapid resuscitation and those with a functionally univentricular circulation.As the familiarity and experience with extracorporeal membrane oxygenation has grown, new indications have evolved, including emergent resuscitation. This utilization has been termed extracorporeal cardiopulmonary resuscitation. The literature supporting emergent cardiopulmonary support is mounting. Reasonable survival rates have been achieved after initiation of support during active compressions of the chest following in-hospital cardiac arrest. Due to the limitations of conventional circuits for extracorporeal membrane oxygenation, some centres have developed novel systems for rapid cardiopulmonary support.Many centres previously considered a functionally univentricular circulation to be a contraindication to extracorporeal membrane oxygenation, but improved results have been achieved recently with this complex subset of patients. The registry of the Extracorporeal Life Support Organization recently reported the outcome of extracorporeal life support used in neonates for cardiac indications from 1996 to 2000. Of the 740 neonates who were placed on extracorporeal life support for cardiac indications, 118 had hypoplastic left heart syndrome. There was no significant difference in survival between these patients and those with other defects. It is now common to use extracorporeal membrane oxygenation to support patients with a functionally univentricular circulation, and reasonable survival rates are to be expected.Although extracorporeal membrane oxygenation has become a standard of care for many paediatric centres, its use is limited to those patients who require only short-term cardiopulmonary support. Mechanical ventricular assist devices have become standard therapy for adults with cardiac failure refractory to maximal medical management. Several devices are readily available in the United States of America for adults, but there are fewer options available to children. Over the last few years, substantial progress has been made in paediatric mechanical support. Ventricular assist devices are being used with increasing frequency in children with cardiac failure refractory to medical therapy for primary treatment as a long-term bridge to recovery or transplantation. The paracorporeal, pneumatic, pulsatile “Berlin Heart” ventricular assist device is being used with increasing frequency in Europe and North America to provide univentricular and biventricular support. With this device, a patient can be maintained on mechanical circulatory support while extubated, being mobilized, and feeding by mouth.Mechanical circulatory support should be anticipated, and every attempt must be made to initiate support “urgently” rather than “emergently”, before the presence of dysfunction of end organs or circulatory collapse. In an emergency, these patients can be resuscitated with extracorporeal membrane oxygenation and subsequently transitioned to a long-term ventricular assist device after a period of stability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Adamantios Tsangaris ◽  
Tamas Alexy ◽  
Rajat Kalra ◽  
Marinos Kosmopoulos ◽  
Andrea Elliott ◽  
...  

Cardiogenic shock accounts for ~100,000 annual hospital admissions in the United States. Despite improvements in medical management strategies, in-hospital mortality remains unacceptably high. Multiple mechanical circulatory support devices have been developed with the aim to provide hemodynamic support and to improve outcomes in this population. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is the most advanced temporary life support system that is unique in that it provides immediate and complete hemodynamic support as well as concomitant gas exchange. In this review, we discuss the fundamental concepts and hemodynamic aspects of VA-ECMO support in patients with cardiogenic shock of various etiologies. In addition, we review the common indications, contraindications and complications associated with VA-ECMO use.


Sign in / Sign up

Export Citation Format

Share Document