scholarly journals Overview of Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support for the Management of Cardiogenic Shock

2021 ◽  
Vol 8 ◽  
Author(s):  
Adamantios Tsangaris ◽  
Tamas Alexy ◽  
Rajat Kalra ◽  
Marinos Kosmopoulos ◽  
Andrea Elliott ◽  
...  

Cardiogenic shock accounts for ~100,000 annual hospital admissions in the United States. Despite improvements in medical management strategies, in-hospital mortality remains unacceptably high. Multiple mechanical circulatory support devices have been developed with the aim to provide hemodynamic support and to improve outcomes in this population. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is the most advanced temporary life support system that is unique in that it provides immediate and complete hemodynamic support as well as concomitant gas exchange. In this review, we discuss the fundamental concepts and hemodynamic aspects of VA-ECMO support in patients with cardiogenic shock of various etiologies. In addition, we review the common indications, contraindications and complications associated with VA-ECMO use.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jun-yi Hou ◽  
Xin Li ◽  
Shou-guo Yang ◽  
Ji-li Zheng ◽  
Jie-fei Ma ◽  
...  

Objective: Primary graft dysfunction (PGD) is the leading cause of early death after heart transplantation. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) can provide temporary mechanical circulatory support and time for functional recovery of the transplanted heart. The purpose of this study was to analyze the timing and prognoses of VA-ECMO in patients with severe PGD after heart transplantation.Methods: A total of 130 patients underwent heart transplantation at the Zhongshan Hospital Affiliated with Fudan University between January 2014 and December 2020. All patients received basiliximab immunoinduction and a classic double vena cava anastomosis orthotopic heart transplantation. Among them, 29 patients (22.3%) developed severe PGD in the early postoperative period. VA-ECMO was performed in patients with difficulty weaning from cardiopulmonary bypass (CPB) or postoperative refractory cardiogenic shock. Patients were divided into two groups according to whether or not they were successfully weaned from VA-ECMO (patients who survived for 48 h after weaning and did not need VA-ECMO assistance again). The perioperative clinical data were recorded, and all patients were followed up until discharge. Early outcomes were compared between groups.Results: A total of 29 patients with VA-ECMO support after heart transplantation were included in this study. The proportion of patients receiving VA-ECMO was 22.3% (29/130). Nineteen patients (65.5%) needed VA-ECMO due to difficulty with weaning from CPB, and 10 patients required VA-ECMO for postoperative cardiogenic shock. Nineteen patients (65.5%) were successfully weaned from VA-ECMO. Overall, in-hospital mortality of VA-ECMO support patients was 55.2%. The main causes of death were ventricular fibrillation (four cases), major bleeding (three cases), infection (four cases), and graft failure (five cases).Conclusion: Despite advances in heart transplantation, severe PGD remains a lethal complication after heart transplantation. At present, the treatment for severe PGD after heart transplantation is a challenge. VA-ECMO provides an effective treatment for severe PGD after heart transplantation, which can promote graft function recovery.


2021 ◽  
Vol 10 (4) ◽  
pp. 747
Author(s):  
Georgios Chatzis ◽  
Styliani Syntila ◽  
Birgit Markus ◽  
Holger Ahrens ◽  
Nikolaos Patsalis ◽  
...  

Since mechanical circulatory support (MCS) devices have become integral component in the therapy of refractory cardiogenic shock (RCS), we identified 67 patients in biventricular support with Impella and venoarterial Extracorporeal Membrane Oxygenation (VA-ECMO) for RCS between February 2013 and December 2019 and evaluated the risk factors of mortality in this setting. Mean age was 61.07 ± 10.7 and 54 (80.6%) patients were male. Main cause of RCS was acute myocardial infarction (AMI) (74.6%), while 44 (65.7%) were resuscitated prior to admission. The mean Simplified Acute Physiology Score II (SAPS II) and Sequential Organ Failure Assessment Score (SOFA) score on admission was 73.54 ± 16.03 and 12.25 ± 2.71, respectively, corresponding to an expected mortality of higher than 80%. Vasopressor doses and lactate levels were significantly decreased within 72 h on biventricular support (p < 0.05 for both). Overall, 17 (25.4%) patients were discharged to cardiac rehabilitation and 5 patients (7.5%) were bridged successfully to ventricular assist device implantation, leading to a total of 32.8% survival on hospital discharge. The 6-month survival was 31.3%. Lactate > 6 mmol/L, vasoactive score > 100 and pH < 7.26 on initiation of biventricular support, as well as Charlson comorbity index > 3 and prior resuscitation were independent predictors of survival. In conclusion, biventricular support with Impella and VA-ECMO in patients with RCS is feasible and efficient leading to a better survival than predicted through traditional risk scores, mainly via significant hemodynamic improvement and reduction in lactate levels.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-5
Author(s):  
Bebiana Manuela Monteiro Faria ◽  
João Português ◽  
Roberto Roncon-Albuquerque Jr ◽  
Rodrigo Pimentel

Abstract Background Takotsubo syndrome (TS) is characterized by a transient left ventricular (LV) dysfunction and rarely presents with cardiogenic shock (CS). Inverted TS (ITS) is a rare entity associated with the presence of a pheochromocytoma. Case summary We present a case of a young woman was admitted to the emergency department due to intense headache, chest discomfort, palpitations, and breathlessness. An ITS secondary to a pheochromocytoma crisis presenting with CS was diagnosed. The patient was managed with veno-arterial extracorporeal membrane oxygenation, until recovery of LV function. On the 35th day of hospitalization, open bilateral adrenalectomy was performed. Discussion Takotsubo syndrome patients presenting with CS are challenging and clinicians should be aware of underlying causes. Specific triggers such as pheochromocytoma should systematically be considered particularly if ITS was presented. Extracorporeal life support devices could provide temporary mechanical circulatory support in patients with TS on refractory CS and help to manage complex cases with TS due to pheochromocytoma.


Perfusion ◽  
2016 ◽  
Vol 32 (5) ◽  
pp. 363-371 ◽  
Author(s):  
Mehmet Cakici ◽  
Evren Ozcinar ◽  
Cagdas Baran ◽  
Ahmet Onat Bermede ◽  
Mehmet Cahit Sarıcaoglu ◽  
...  

Objectives: This study was designed to compare vascular complications and the outcomes of ultrasound (US)-guided percutaneous cannulation with distal perfusion catheter (PC-DP) and arterial side-graft perfusion (SGP) techniques in patients who require veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for refractory cardiogenic shock (RCS). Methods: We conducted a retrospective, observational cohort study of consequtive patients with RCS treated with VA-ECMO at a single transplant center from March 2010 until August 2015. Overall, 148 patients underwent VA-ECMO for RCS (99 men, aged 56.6 ± 12.0 years; BSA, 1.85 ± 0.19). Patients were categorized based on VA-ECMO perfusion technique into PC-DP via femoral artery and SGP via axillary/femoral artery groups. Results: The median duration of VA-ECMO support was 5 days (range, 8 hours–80 days). Hospital mortality (PC-DP group, 54.7%; SGP group, 64.4%; p=0.23) and overall ECMO survival (PC-DP group, 36.9%; SGP group, 32.2%; p=0.47) was similar between the groups. There were no significant between-group differences in the rate of acute limb ischemia (PC-DP group, 4/75, 5.3%; SGP group, 2/73, 2.7%; p=0.68). However, the rate of surgical/cannulation site bleeding (PC-DP, 9/75 (12%) vs SGP, 18/73 (24.7%), p=0.05) and hyperperfusion syndrome (PC-DP, 2/75 (2.7%) vs SGP, 22/73 (30.1%),p=0.001) were higher in the SGP group than in the PC-DP group. Conclusions: We observed no significant difference in major vascular complications or survival between patients who underwent the PC-DP technique and those who underwent arterial SGP.


2019 ◽  
pp. 088506661989454
Author(s):  
Aniket S. Rali ◽  
Jonathan Chandler ◽  
Andrew Sauer ◽  
Michael A. Solomon ◽  
Zubair Shah

Cardiogenic shock (CS) portends an extremely high mortality of nearly 50% during index hospitalization. Prompt diagnoses of CS, its underlying etiology, and efficient implementation of treatment modalities, including mechanical circulatory support (MCS), are critical especially in light of such high predicted mortality. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) provides the most comprehensive cardiopulmonary support in critically ill patients and hence has seen a steady increase in its utilization over the past decade. Hence, a good understanding of VA-ECMO, its role in treatment of CS, especially when compared with other temporary MCS devices, and its complications are vital for any critical care cardiologist. Our review of VA-ECMO aims to provide the same.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Emiliano Gamberini ◽  
Venerino Poletti ◽  
Emanuele Russo ◽  
Alessandro Circelli ◽  
Marco Benni ◽  
...  

Abstract Background Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is usually performed in cases of severe respiratory failure in which conventional and advanced mechanical ventilation strategies are ineffective in achieving true lung-protective ventilation, thus triggering ventilatory-induced lung injury. If circulatory failure coexists, veno-arterial ECMO (VA-ECMO) may be preferred over VV-ECMO because of its potential for circulatory support. In VA-ECMO, the respiratory contribution is less effective and the complication rate is higher than in the VV configuration. Case presentation The authors present a case in which VV-ECMO was performed in an emergency setting to treat a 68-year-old White male patient who experienced acute respiratory failure after massive aspiration. Despite intubation and intensive care unit admission, multiple organ failure occurred suddenly, thus prompting referral to a level-1 trauma center with an ECMO facility. The patient’s condition slowly improved with VV-ECMO support along with standard treatment for hemodynamic impairment. VV-ECMO was discontinued on day 8. The patient was extubated on day 14 and discharged home fully recovered 34 days after the event. Conclusions Attention was focused on the decision to initiate VV-ECMO support even in the presence of severe hemodynamic derangement, although VA-ECMO could have provided better hemodynamic support but less effective respiratory support.


2019 ◽  
Vol 7 (11) ◽  
pp. 1768-1773
Author(s):  
Mohamed Abouelwafa ◽  
Waheed Radwan ◽  
Alia Abdelfattah ◽  
Akram Abdelbary ◽  
Mohamed Khaled ◽  
...  

BACKGROUND: Venoarterial extracorporeal membranous oxygenation is a form of temporary mechanical circulatory support that gets as a salvage technique in patients with cardiogenic shock, we intended to evaluate the effect of (VA ECMO) support on hemodynamics and lactate levels in patients with cardiogenic shock.AIM: The aim of our study is to detect the ability to introduce veno-arterial extracorporeal membranous oxygenation (VA ECMO) as a temporary extracorporeal life support system (ECLS) in our unit, demonstrate the role of ECMO in cardiogenic shock patients regarding improving hemodynamics and microcirculation, and demonstrate the complications and drawbacks in our first center experience regarding VA ECMO.MATERIAL AND METHODS: This was a single-centre observational study that included 10 patients admitted with cardiogenic shock for which VA ECMO was used as mechanical circulatory support. RESULTS: The MAP increased after initiation of the support. It was 41.8 ± 9.3 mmHg and 59.5 ± 6.8 mmHg (P = 0.005). The use of VA ECMO support was associated with a statistically significant decrease in the base deficit (-10.6 ± 4.2 and -6.3 ± 7.4, P = 0.038). The serum lactate declined from 5.9 ± 3.5 mmoL/L to 0.6 ± 4.4 mmoL/L by the use of VA ECMO; a statistically significant change (P = 0.005).CONCLUSIONS: We concluded that VA ECMO as mechanical support for patients with cardiogenic shock might improve mean arterial blood pressure, base deficit and lactate clearance.


2021 ◽  
Vol 10 (4) ◽  
pp. 759
Author(s):  
Guillaume Schurtz ◽  
Natacha Rousse ◽  
Ouriel Saura ◽  
Vincent Balmette ◽  
Flavien Vincent ◽  
...  

Mechanical circulatory support (MCS) devices are effective tools in managing refractory cardiogenic shock (CS). Data comparing veno-arterial extracorporeal membrane oxygenation (VA-ECMO) and IMPELLA® are however scarce. We aimed to assess outcomes of patients implanted with these two devices and eligible to both systems. From 2004 to 2020, we retrospectively analyzed 128 patients who underwent VA-ECMO or IMPELLA® in our institution for refractory left ventricle (LV) dominant CS. All patients were eligible to both systems: 97 patients were first implanted with VA-ECMO and 31 with IMPELLA®. The primary endpoint was 30-day all-cause death. VA-ECMO patients were younger (52 vs. 59.4, p = 0.006) and had a higher lactate level at baseline than those in the IMPELLA® group (6.84 vs. 3.03 mmol/L, p < 0.001). Duration of MCS was similar between groups (9.4 days vs. 6 days in the VA-ECMO and IMPELLA® groups respectively, p = 0.077). In unadjusted analysis, no significant difference was observed between groups in 30-day mortality: 43.3% vs. 58.1% in the VA-ECMO and IMPELLA® groups, respectively (p = 0.152). After adjustment, VA-ECMO was associated with a significant reduction in 30-day mortality (HR = 0.25, p = 0.004). A higher rate of MCS escalation was observed in the IMPELLA® group: 32.3% vs. 10.3% (p = 0.003). In patients eligible to either VA-ECMO or IMPELLA® for LV dominant refractory CS, VA-ECMO was associated with improved survival rate and a lower need for escalation.


2020 ◽  
Vol 41 (38) ◽  
pp. 3753-3761 ◽  
Author(s):  
Enzo Lüsebrink ◽  
Mathias Orban ◽  
Danny Kupka ◽  
Clemens Scherer ◽  
Christian Hagl ◽  
...  

Abstract Cardiogenic shock is still a major driver of mortality on intensive care units and complicates ∼10% of acute coronary syndromes with contemporary mortality rates up to 50%. In the meantime, percutaneous circulatory support devices, in particular venoarterial extracorporeal membrane oxygenation (VA-ECMO), have emerged as an established salvage intervention for patients in cardiogenic shock. Venoarterial extracorporeal membrane oxygenation provides temporary circulatory support until other treatments are effective and enables recovery or serves as a bridge to ventricular assist devices, heart transplantation, or decision-making. In this critical care perspective, we provide a concise overview of VA-ECMO utilization in cardiogenic shock, considering rationale, critical care management, as well as weaning aspects. We supplement previous literature by focusing on therapeutic issues related to the vicious circle of retrograde aortic VA-ECMO flow, increased left ventricular (LV) afterload, insufficient LV unloading, and severe pulmonary congestion limiting prognosis in a relevant proportion of patients receiving VA-ECMO treatment. We will outline different modifications in percutaneous mechanical circulatory support to meet this challenge. Besides a strategy of running ECMO at lowest possible flow rates, novel therapeutic options including the combination of VA-ECMO with percutaneous microaxial pumps or implementation of a venoarteriovenous-ECMO configuration based on an additional venous cannula supplying towards pulmonary circulation are most promising among LV unloading and venting strategies. The latter may even combine the advantages of venovenous and venoarterial ECMO therapy, providing potent respiratory and circulatory support at the same time. However, whether VA-ECMO can reduce mortality has to be evaluated in the urgently needed, ongoing prospective randomized studies EURO-SHOCK (NCT03813134), ANCHOR (NCT04184635), and ECLS-SHOCK (NCT03637205). These studies will provide the opportunity to investigate indication, mode, and effect of LV unloading in dedicated sub-analyses. In future, the Heart Teams should aim at conducting a dedicated randomized trial comparing VA-ECMO support with vs. without LV unloading strategies in patients with cardiogenic shock.


2021 ◽  
Author(s):  
Hongfeng Yang ◽  
Jun Yan ◽  
Zhixin Yu ◽  
Yan Cai ◽  
Zhaochen Jin

Abstract Introduction: Cardiogenic shock is considered a serious stage of heart disease, and there is no better way to treat this. Veno-arterial Extracorporeal membrane oxygenation (VA-ECMO) is a well-established technology that can be used as potential life-saving measures in patients who present with cardiac arrest or severe hemodynamic instability by improving organ perfusion and oxygenation. However, it is usually complex and needs individualized decisions in a multidisciplinary approach to manage patients receiving Extracorporeal membrane oxygenation, as defined clinical condition’s protocols are still lacking. Case presentation: one patient was a 44-year-old man with out-of-hospital ventricular fibrillation was transferred to our hospital after initial cardiopulmonary resuscitation. In the emergency department, he presented with ST-segment elevation extensive anterior wall myocardial infarction and cardiogenic shock with paroxysmal ventricular tachycardia. After transfer to intensive care unit, VA-ECMO was implanted due to worsening cardiogenic shock and recovered slowly thereafter. Another patient was a 58-year-old woman presented refractory hypotension. As a bridge-therapy, VA-ECMO support was implanted and then the patient was taken to the cardiac catheterization laboratory where she experienced Percutaneous coronary intervention and implanted a drug-eluting stent in the right coronary artery. Due to acute kidney injury, continuous renal replacement therapy was given to facilitate the control of fluid access balance, the removal of inflammatory media.Conclusion: VA-ECMO is not only used as a temporary treatment strategy for cardiogenic shock, but also as a bridge-therapy. It is important to focus on the improve the success rate of VA-ECMO treatment and avoid complications.


Sign in / Sign up

Export Citation Format

Share Document