scholarly journals The mechanistic overview of SARS-CoV-2 using angiotensin-converting enzyme 2 to enter the cell for replication: possible treatment options related to the renin–angiotensin system

2020 ◽  
Vol 6 (5) ◽  
pp. 317-325 ◽  
Author(s):  
Annette Offringa ◽  
Roy Montijn ◽  
Sandeep Singh ◽  
Martin Paul ◽  
Yigal M Pinto ◽  
...  

Abstract The SARS-CoV-2 pandemic is a healthcare crisis caused by insufficient knowledge applicable to effectively combat the virus. Therefore, different scientific discovery strategies need to be connected, to generate a rational treatment which can be made available as rapidly as possible. This relies on a solid theoretical understanding of the mechanisms of SARS-CoV-2 infection and host responses, which is coupled to the practical experience of clinicians that are treating patients. Because SARS-CoV-2 enters the cell by binding to angiotensin-converting enzyme 2 (ACE2), targeting ACE2 to prevent such binding seems an obvious strategy to combat infection. However, ACE2 performs its functions outside the cell and was found to enter the cell only by angiotensin II type 1 receptor (AT1R)-induced endocytosis, after which ACE2 is destroyed. This means that preventing uptake of ACE2 into the cell by blocking AT1R would be a more logical approach to limit entry of SARS-CoV-2 into the cell. Since ACE2 plays an important protective role in maintaining key biological processes, treatments should not disrupt the functional capacity of ACE2, to counterbalance the negative effects of the infection. Based on known mechanisms and knowledge of the characteristics of SARS-CoV we propose the hypothesis that the immune system facilitates SARS-CoV-2 replication which disrupts immune regulatory mechanisms. The proposed mechanism by which SARS-CoV-2 causes disease immediately suggests a possible treatment, since the AT1R is a key player in this whole process. AT1R antagonists appear to be the ideal candidate for the treatment of SARS-CoV-2 infection. AT1R antagonists counterbalance the negative consequences of angiotesnin II and, in addition, they might even be involved in preventing the cellular uptake of the virus without interfering with ACE2 function. AT1R antagonists are widely available, cheap, and safe. Therefore, we propose to consider using AT1R antagonists in the treatment of SARS-CoV-2.

TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


Author(s):  
Fatemeh Hadizadeh

Abstract The coronavirus disease 2019 (COVID-19) pandemic was declared a public health emergency of international concern by the World Health Organization. COVID-19 has high transmissibility and could result in acute lung injury in a fraction of patients. By counterbalancing the activity of the renin-angiotensin system, angiotensin-converting enzyme 2, which is the fusion receptor of the virus, plays a protective role against the development of complications of this viral infection. Vitamin D can induce the expression of angiotensin-converting enzyme 2 and regulate the immune system through different mechanisms. Epidemiologic studies of the relationship between vitamin D and various respiratory infections were reviewed and, here, the postulated mechanisms and clinical data supporting the protective role of vitamin D against COVID-19–mediated complications are discussed.


Author(s):  
Kaiming Wang ◽  
Mahmoud Gheblawi ◽  
Anish Nikhanj ◽  
Matt Munan ◽  
Erika MacIntyre ◽  
...  

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52–74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1–7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hamid Reza Kouhpayeh ◽  
Farhad Tabasi ◽  
Mohammad Dehvari ◽  
Mohammad Naderi ◽  
Gholamreza Bahari ◽  
...  

Abstract Background The COVID-19 pandemic remains an emerging public health crisis with serious adverse effects. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV--2) infection, targeting angiotensin-converting enzyme-2 (ACE2) receptor for cell entry. However, changes in the renin-angiotensin system (RAS) balance alter an individual’s susceptibility to COVID-19 infection. We aimed to evaluate the association between AGT rs699 C > T, ACE rs4646994 I/D, and AGTR1 rs5186 C > A variants and the risk of COVID-19 infection and the severity in a sample of the southeast Iranian population. Methods A total of 504 subjects, including 258 COVID-19 positives, and 246 healthy controls, were recruited. Genotyping of the ACE gene rs4646994, and AGT rs699, and AGTR1 rs5186 polymorphisms was performed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP), respectively. Results Our results showed that the II genotype of ACE rs4646994 and the I allele decreased the risk of COVID-19 infection. Moreover, we found that the TC genotype and C allele of AGT rs699 increased the risk of COVID-19 infection. The AGTR1 rs5186 was not associated with COVID-19 infection. Also, we did not find any association between these polymorphisms and the severity of the disease. However, we found a significantly higher age and prevalence of diabetes and hypertension in patients with severe disease than a non-severe disease. Conclusions These findings suggest that ACE rs4646994 and AGT rs699 polymorphisms increase the risk of COVID-19 infection in a southeast Iranian population.


2020 ◽  
Vol 126 (10) ◽  
pp. 1456-1474 ◽  
Author(s):  
Mahmoud Gheblawi ◽  
Kaiming Wang ◽  
Anissa Viveiros ◽  
Quynh Nguyen ◽  
Jiu-Chang Zhong ◽  
...  

Author(s):  
Annalise E Zemlin ◽  
Owen J Wiese

Since the first cases of atypical pneumonia linked to the Huanan Seafood Wholesale Market in Wuhan, China, were described in late December 2019, the global landscape has changed radically. In March 2020, the World Health Organization declared COVID-19 a global pandemic, and at the time of writing this review, just over three million individuals have been infected with more than 200,000 deaths globally. Numerous countries are in ‘lockdown’, social distancing is the new norm, even the most advanced healthcare systems are under pressure, and a global economic recession seems inevitable. A novel coronavirus (SARS-CoV-2) was identified as the aetiological agent. From experience with previous coronavirus epidemics, namely the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in 2004 and 2012 respectively, it was postulated that the angiotensin-converting enzyme-2 (ACE2) receptor is a possible port of cell entry. ACE2 is part of the renin-angiotensin system and is also associated with lung and cardiovascular disorders and inflammation. Recent studies have confirmed that ACE2 is the port of entry for SARS-CoV-2. Male sex, advanced age and a number of associated comorbidities have been identified as risk factors for infection with COVID-19. Many high-risk COVID-19 patients with comorbidities are on ACE inhibitors and angiotensin receptor blockers, and this has sparked debate about whether to continue these treatment regimes. Attention has also shifted to ACE2 being a target for future therapies or vaccines against COVID-19. In this review, we discuss COVID-19 and its complex relationship with ACE2.


Sign in / Sign up

Export Citation Format

Share Document