scholarly journals The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases

2002 ◽  
Vol 21 (21) ◽  
pp. 5815-5823 ◽  
Author(s):  
K.M. Kazmierczak
2019 ◽  
Author(s):  
Ramesh Padmanabhan ◽  
Dennis Miller

1.1AbstractRNA polymerases (RNAPs) differ from other polymerases in that they can bind promoter sequences and initiate de novo transcription. Promoter recognition requires the presence of specific DNA binding domains in the polymerase. The structure and mechanistic aspects of transcription by the bacteriophage T7 RNA polymerase (T7 RNAP) are well characterized. This single subunit RNAP belongs to the family of RNAPs which also includes the T3, SP6 and mitochondrial RNAPs. High specificity for its promoter, the requirement of no additional transcription factors, and high fidelity of initiation from a specific site in the promoter makes it the polymerase of choice to study the mechanistic aspects of transcription. The structure and function of the catalytic domains of this family of polymerases are highly conserved suggesting a common mechanism underlying transcription. Although the two groups of single subunit RNAPs, mitochondrial and bacteriophage, have remarkable structural conservation, they recognize quite dissimilar promoters. Specifically, the bacteriophage promoters recognize a 23 nucleotide promoter extending from −17 to + 6 nucleotides relative to the site of transcription initiation, while the well characterized promoter recognized by the yeast mitochondrial RNAP is nine nucleotides in length extending from −8 to +1 relative to the site of transcription initiation. Promoters recognized by the bacteriophage RNAPs are also well characterized with distinct functional domains involved in promoter recognition and transcription initiation. Thorough mutational studies have been conducted by altering individual base-pairs within these domains. Here we describe experiments to determine whether the prototype bacteriophage RNAP is able to recognize and initiate at truncated promoters similar to mitochondrial promoters. Using an in vitro oligonucleotide transcriptional system, we have assayed transcription initiation activity by T7 RNAP. When a complete or almost complete (20 to 16 nucleotide) double stranded T7 RNAP promoter sequence is present, small RNA’s are produced through template-independent and promoter-dependent stuttering corresponding to abortive initiation, and this effect was lost with a scrambled promoter sequence. When partial double stranded promoter sequences (10 to 12 nucleotides) are supplied, template dependent de novo initiation of RNA occurs at a site different from the canonical +1-initiation site. The site of transcription initiation is determined by a recessed 3’ end based paired to the template strand of DNA rather than relative to the partial promoter sequence. Understanding the mechanism underlying this observation helps us to understand the role of the elements in the T7 promoter, and provides insights into the promoter evolution of the single-subunit RNAPs.


2002 ◽  
Vol 184 (18) ◽  
pp. 4952-4961 ◽  
Author(s):  
S. H. Willis ◽  
K. M. Kazmierczak ◽  
R. H. Carter ◽  
L. B. Rothman-Denes

ABSTRACT Bacteriophage N4 middle genes are transcribed by a phage-coded, heterodimeric, rifampin-resistant RNA polymerase, N4 RNA polymerase II (N4 RNAPII). Sequencing and transcriptional analysis revealed that the genes encoding the two subunits comprising N4 RNAPII are translated from a common transcript initiating at the N4 early promoter Pe3. These genes code for proteins of 269 and 404 amino acid residues with sequence similarity to the single-subunit, phage-like RNA polymerases. The genes encoding the N4 RNAPII subunits, as well as a synthetic construct encoding a fusion polypeptide, have been cloned and expressed. Both the individually expressed subunits and the fusion polypeptide reconstitute functional enzymes in vivo and in vitro.


2009 ◽  
Vol 421 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Dina Grohmann ◽  
Angela Hirtreiter ◽  
Finn Werner

Archaeal and eukaryotic RNAPs (DNA-dependent RNA polymerases) are complex multi-subunit enzymes. Two of the subunits, F and E, which together form the F/E complex, have been hypothesized to associate with RNAP in a reversible manner during the transcription cycle. We have characterized the molecular interactions between the F/E complex and the RNAP core. F/E binds to RNAP with submicromolar affinity and is not in a dynamic exchange with unbound F/E.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Archana Prabahar ◽  
Subashini Swaminathan ◽  
Arul Loganathan ◽  
Ramalingam Jegadeesan

Tobacco mosaic virus (TMV) infects several crops of economic importance (e.g., tomato) and remains as one of the major concerns to the farmers. TMV enters the host cell and produces the capping enzyme RNA polymerase. The viral genome replicates further to produce multiple mRNAs which encodes several proteins, including the coat protein and an RNA-dependent RNA polymerase (RdRp), as well as the movement protein. TMV replicase domain was chosen for the virtual screening studies against small molecules derived from ligand databases such as PubChem and ChemBank. Catalytic sites of the RdRp domain were identified and subjected to docking analysis with screened ligands derived from virtual screening LigandFit. Small molecules that interact with the target molecule at the catalytic domain region amino acids, GDD, were chosen as the best inhibitors for controlling the TMV replicase activity.


1995 ◽  
Vol 15 (12) ◽  
pp. 6729-6735 ◽  
Author(s):  
J Liu ◽  
W Zhou ◽  
P W Doetsch

Dihydrouracil (DHU) is a major base damage product formed from cytosine following exposure of DNA to ionizing radiation under anoxic conditions. To gain insight into the DNA lesion structural requirements for RNA polymerase arrest or bypass at various DNA damages located on the transcribed strand during elongation, DHU was placed onto promoter-containing DNA templates 20 nucleotides downstream from the transcription start site. In vitro, single-round transcription experiments carried out with SP6 and T7 RNA polymerases revealed that following a brief pause at the DHU site, both enzymes efficiently bypass this lesion with subsequent rapid generation of full-length runoff transcripts. Direct sequence analysis of these transcripts indicated that both RNA polymerases insert primarily adenine opposite to the DHU site, resulting in a G-to-A transition mutation in the lesion bypass product. Such bypass and insertion events at DHU sites (or other types of DNA damages), if they occur in vivo, have a number of important implications for both the repair of such lesions and the DNA damage-induced production of mutant proteins at the level of transcription (transcriptional mutagenesis).


2019 ◽  
Vol 47 (19) ◽  
pp. 10296-10312 ◽  
Author(s):  
Ranjit K Prajapati ◽  
Petja Rosenqvist ◽  
Kaisa Palmu ◽  
Janne J Mäkinen ◽  
Anssi M Malinen ◽  
...  

Abstract Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Sign in / Sign up

Export Citation Format

Share Document