scholarly journals Correlation between cardiac magnetic resonance feature tracking derived left ventricular strain and morphological characteristics of non-ischemic dilated cardiomyopathy at baseline and follow-up

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
E Pozo Osinalde ◽  
J Urmeneta Ulloa ◽  
J L Rodriguez Hernandez ◽  
L Perez De Isla ◽  
H Martinez Fernandez ◽  
...  

Abstract Background Left ventricular (LV) strain from echocardiography is a known useful predictor of LVEF recovery in non-ischemic dilated cardiomyopathy (NIDCM). More recently, feature tracking (FT) has allowed LV myocardial deformation analysis using conventional cardiac magnetic resonance (CMR) cine sequences. Purpose Our aim is to establish the correlation between LV strain values from CMR-FT at diagnosis and morphological parameters at baseline and during follow-up. Methods Consecutive patients with NIDCM who underwent CMR were retrospectively collected. All the studies were performed in a 1.5 Tesla magnet following a standard acquisition protocol of conventional SSFP cine sequences in long and short axis. Global longitudinal, circumferential and radial strain (GLS, GCS and GRS, respectively) were obtained with a dedicated FT software. Correlation with CMR morphological parameters at baseline were evaluated. Likewise, in the cases with follow-up echocardiogram association between FT LV strain and evolution of morphofunctional variables was explored. Results CMR-FT strain analysis was performed in 98 patients (age 68±13 years, 72% males) with NIDCM. They showed severe LV dilatation (LVEDVi= 133.6±33.4 mL/m2) and systolic dysfunction (LVEF= 29.5±9.6%) at baseline. Myocardial fibrosis was detected in 38.8% of the patients with late gadolium enhancement (LGE) sequence. All the basal CMR morphological characteristics were significantly correlated with FT strain analysis (Table), even more markedly for GCS. However, there was no association of baseline morphofunctional parameters with LGE. An echocardiogram was performed in 85.7% of the patients during the follow-up (2.4 [1.8–3.4] years), with an LVEF >50% in the 25.5% of the cases. These patients with preserved LVEF in the evolution showed better GCS (−9 vs −7.1%; p=0.019) at baseline, with no differences in the other FT LV strain parameters. Despite less fibrosis in LGE (16.1% vs 37.7%; p=0.037), none of the baseline morphofunctional CMR parameters (LVEF, LVEDVi...) were associated with systolic function restoration. In multivariate analysis, GCS was the only independent predictor (OR 1.16; p=0.045) of LVEF recovery among imaging variables. Conclusions All the FT derived LV strain values were correlated with the degree of basal morphofunctional involvement in NIDCM. Furthermore, GCS emerged as an independent imaging predictor of LV systolic function restoration in our series. FUNDunding Acknowledgement Type of funding sources: None. Table 1. Correlation between myocardial deformation values by feature tracking and morphofunctional variables in basal CMR.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chengjie Gao ◽  
Yajie Gao ◽  
Jingyu Hang ◽  
Meng Wei ◽  
Jingbo Li ◽  
...  

Abstract Background A considerable number of non-ischemic dilated cardiomyopathy (NDCM) patients had been found to have normalized left ventricular (LV) size and systolic function with tailored medical treatments. Accordingly, we aimed to evaluate if strain parameters assessed by cardiovascular magnetic resonance (CMR) feature tracking (FT) analysis could predict the NDCM recovery. Methods 79 newly diagnosed NDCM patients who underwent baseline and follow-up CMR scans were enrolled. Recovery was defined as a current normalized LV size and systolic function evaluated by CMR. Results Among 79 patients, 21 (27%) were confirmed recovered at a median follow-up of 36 months. Recovered patients presented with faster heart rates (HR) and larger body surface area (BSA) at baseline (P < 0.05). Compared to unrecovered patients, recovered pateints had a higher LV apical radial strain divided by basal radial strain (RSapi/bas) and a lower standard deviation of time to peak radial strain in 16 segments of the LV (SD16-TTPRS). According to a multivariate logistic regression model, RSapi/bas (P = 0.035) and SD16-TTPRS (P = 0.012) resulted as significant predictors for differentiation of recovered from unrecovered patients. The sensitivity and specificity of RSapi/bas and SD16-TTPRS for predicting recovered conditions were 76%, 67%, and 91%, 59%, with the area under the curve of 0.75 and 0.76, respectively. Further, Kaplan Meier survival analysis showed that patients with RSapi/bas ≥ 0.95% and SD16-FTPRS ≤ 111 ms had the highest recovery rate (65%, P = 0.027). Conclusions RSapi/bas and CMR SD16-TTPRS may be used as non-invasive parameters for predicting LV recovery in NDCM. This finding may be beneficial for subsequent treatments and prognosis of NDCM patients. Registration number: ChiCTR-POC-17012586.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Stathogiannis ◽  
V Mor-Avi ◽  
R Lang ◽  
A R Patel

Abstract Background Cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) is the gold standard for detection of myocardial scar. We hypothesized that CMR Feature Tracking (FT)-derived regional myocardial strain may reflect the presence of scar and could thus potentially be used instead of LGE imaging. Purpose The aim of this study was to determine the relationship between FT-derived regional myocardial strain and LGE in patients with coronary artery disease (CAD). Methods Seventy-five patients with CAD and typical ischemic LGE patterns on CMR (1.5T) were included (mean age 60±12 years, 70% males). Myocardial strain analysis and LGE identification were performed using dedicated commercial software. Scar was defined by presence of LGE in the same area of the myocardium in both short- and long-axis views. Peak systolic regional longitudinal and circumferential strain (RLS, RCS) values were calculated in the region of interest corresponding to the LGE area and also in a non-LGE myocardial region as a reference in each patient. These comparisons were repeated for a subgroup of 36 patients with left ventricular (LV) ejection fraction (EF) <40% to determine whether the relationship between strain and LGE holds in the presence of reduced LV function, when strain measurements may be altered as a reflection of reduced LVEF itself. Results Both global longitudinal and circumferential strain values were abnormal (−12.8±5.1% and −11.4±4.1%, respectively), reflecting LV dysfunction in this CAD cohort (EF = 40±16%). The magnitude of both RLS and RCS was significantly reduced in areas of LGE, compared to those without LGE: RLS −10.0±5.8% versus −20.4±7.5% (p<0.001); RCS −10.1±5.3±% versus −18.9±7.5%, respectively (p<0.001). Same pattern was noted in the reduced EF subgroup: RLS −8.0±4.7% versus −16.9±6.6% (p<0.001), RCS −7.7±4.3±% versus −16.0±7.9%, respectively (p<0.001). The figure depicts 2 representative cases in long and short axis views, LGE detection and concomitant regional strain analysis. LGE and regional strain analysis. Conclusion Reduced magnitude of regional longitudinal and circumferential strain by CMR-FT correlates with presence of LGE. Pending further validation, this finding may constitute the basis for detection of scar without contrast enhanced imaging, and would result in reduced cost, scan time and risk associated with gadolinium. Acknowledgement/Funding ARP: Research support (software) from Neosoft and Philips


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
A Kiss ◽  
A Szucs ◽  
A Furak ◽  
Z S Gregor ◽  
M Horvath ◽  
...  

Abstract Feature tracking (FT) is a new cardiac magnetic resonance (CMR) technique for strain measurement to reveal changes e.g. in noncompaction cardiomyopathy (NCMP) patients with good ejection fraction (EF). Our aim was to describe, first in the literature, the functional and CMR-FT strain values of NCMP patients with good EF and to compare them with their previous scans taken 4 years ago. At the Heart and Vascular Center of Semmelweis University 6743 CMR examinations were done between 2009-2015 and 232 NCMP patients were diagnosed. We followed up 27 patients, who had a previous examination at least 4 years ago, had no co-morbidities and whoes EF were above 50% (mean age: 37 ± 14.4 years, 18 males, mean follow up: 5.7 ± 1.5 years). Their parameters were compared to a matched control (C) group. The Medis Suite software was used for analysis, the MedCalc software for statistics, (p &lt; 0.05). We compared the patient’s previous (PREV) and recent (REC) functional parameters but did not find significant changes. Comparing the global longitudinal and global circumferential strains (GLS, GCS) and rotation (R) no difference was found between the PREV and the REC values. The GCS showed significant difference between NCMP and C groups (-30.2 ± 5.0 vs -35.9 ± 4.5; p &lt; 0.0001). We compared the segmental longitudinal and circumferential strain values of PREV vs. REC groups and NCMP vs C groups and found significant differences just in a few segments. The left ventricular (LV) apical part’s mean longitudinal strain value showed significant decrease on the REC scans compared to the PREV (PREV vs REC: -24.4 ± 7.7 vs -20.6 ± 5.1%; p &lt; 0.05) and a non-significant decrease compared to the C (C vs REC: -22.8 ± 7.5 vs -20.6 ± 5.1%; p= n.s.). The ratio of the average longitudinal strain value of the apical and basal part of the left ventricle was significantly smaller in the REC group compared to the PREV but did not differ from the C subjects ( PREV vs. REC: 1.5 ± 0.8 vs 1.0 ±0.3; C vs REC: 1.5 ± 0.3 vs 1.2 ± 0.5; p &lt; 0.05) We did not find worsening in the functional parameters of NCMP patients with good EF by the end of the follow up period. However, subclinical changes can be detected in the affected apical part of LV when using FT suggesting the need for follow up.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Gleditsch ◽  
O Jervan ◽  
O Geier ◽  
A Tofteberg ◽  
W Ghanima ◽  
...  

Abstract Background Strain is a more sensitive and precise parameter than ejection fraction (EF) for detection and characterization of subclinical left ventricular (LV) dysfunction and remodeling. Similar relationship is expected for right ventricle (RV); however RV functional parameters are less validated. Feature tracking strain analysis based on standard cardiac magnetic resonance (CMR) cine imaging is available for both ventricles. We experience a large slice-to-slice variation for RV global circumferential strain (GCS), possibly making the parameter vulnerable to minute position changes. Purpose To evaluate slice-to-slice differences in RV GCS for identification of the least variation region in a patient group without regional RV disease, in order to achieve a robust method for measurement. Hypothesis The slice-to-slice difference in peak GCS is lower in the mid-ventricular part of the RV than in the basal and apical parts. Methods 50 patients 6–72 months after pulmonary embolism without other major cardiopulmonary disease were included; mean age 60 years (range: 18–75 years); 68% men. Standard 2D cine CMR was obtained in longitudinal planes and in 10–12 consecutive 10 mm short axis planes for complete coverage of the RV. RV free wall and the inner contour of the septum were manually segmented on every end-diastolic and end-systolic slice from the pulmonary valve to the apex for feature tracking strain analysis. Peak RV GCS for every short axis slice and GCS difference (absolute percentage points) between adjacent slices were calculated. RV EF and peak RV GLS from the 4-chamber image were measured for correlation to RV GCS. Wilcoxon signed rank test and Pearson correlation were performed. Confidence intervals of means are based on 1000 bootstrap samples. Results RV EF was 46.6% (95% CI: 44.3; 48.8), RV peak GLS was −17.6% (95% CI: −18.6; −16.6). RV mid-ventricular GCS was −10.9% (95% CI: −12.0; −9.9). RV peak GCS slice-to-slice difference was 6.8 absolute percentage points (95% CI: 6.0; 7.6) in the basal part, 2.7 (95% CI: 2.4; 3.0) in the mid-ventricular part and 4.6 (95% CI: 3.9; 5.3) apically. Difference was significantly lower in mid-ventricular (p<0.001) compared to both basal and apical. RV EF correlated to RV peak GLS (r: −0.397, p=0.004) and mid-ventricular peak GCS (r: −0.356, p=0.01) but not to basal or apical peak GCS. RV peak GLS correlated to basal and mid-ventricular peak GCS (r: 0.313, p=0.03 and r: 0.301, p=0.03 respectively) but not to apical peak GCS. Figure 1 shows slice-to-slice difference (expressed in absolute percentage points) in right ventricular peak GCS. Conclusion Slice-to-slice difference in RV peak GCS was significantly lower in the mid-ventricular region. Large differences in the basal and apical parts indicate that measurements largely depend on slice positioning.


Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


Author(s):  
Zsofia Dohy ◽  
Liliana Szabo ◽  
Attila Toth ◽  
Csilla Czimbalmos ◽  
Rebeka Horvath ◽  
...  

AbstractThe prognosis of patients with hypertrophic cardiomyopathy (HCM) varies greatly. Cardiac magnetic resonance (CMR) is the gold standard method for assessing left ventricular (LV) mass and volumes. Myocardial fibrosis can be noninvasively detected using CMR. Moreover, feature-tracking (FT) strain analysis provides information about LV deformation. We aimed to investigate the prognostic significance of standard CMR parameters, myocardial fibrosis, and LV strain parameters in HCM patients. We investigated 187 HCM patients who underwent CMR with late gadolinium enhancement and were followed up. LV mass (LVM) was evaluated with the exclusion and inclusion of the trabeculae and papillary muscles (TPM). Global LV strain parameters and mechanical dispersion (MD) were calculated. Myocardial fibrosis was quantified. The combined endpoint of our study was all-cause mortality, heart transplantation, malignant ventricular arrhythmias and appropriate implantable cardioverter defibrillator (ICD) therapy. The arrhythmia endpoint was malignant ventricular arrhythmias and appropriate ICD therapy. The LVM index (LVMi) was an independent CMR predictor of the combined endpoint independent of the quantification method (p < 0.01). The univariate predictors of the combined endpoint were LVMi, global longitudinal (GLS) and radial strain and longitudinal MD (MDL). The univariate predictors of arrhythmia events included LVMi and myocardial fibrosis. More pronounced LV hypertrophy was associated with impaired GLS and increased MDL. More extensive myocardial fibrosis correlated with impaired GLS (p < 0.001). LVMi was an independent CMR predictor of major events, and myocardial fibrosis predicted arrhythmia events in HCM patients. FT strain analysis provided additional information for risk stratification in HCM patients.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
C Nikolaidou ◽  
C Kotanidis ◽  
J Leal-Pelado ◽  
K Kouskouras ◽  
VP Vassilikos ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Cardiac magnetic resonance (CMR) imaging can identify the underlying substrate in patients with ventricular arrhythmias (VAs) and normal echocardiography. Myocardial strain has emerged as a superior index of systolic performance compared to ejection fraction (EF), with an incremental prognostic value in many cardiac diseases. Purpose To assess myocardial deformation using 2-D feature-tracking CMR strain imaging (CMR-FT) in patients with frequent VAs (≥500 ventricular premature contractions (VPC)/24 hours; and/or non-sustained ventricular tachycardia), and structurally normal hearts on echocardiography without evidence of coronary artery disease. Methods Sixty-eight consecutive patients (mean age 46 ± 16 years; 54% female) and 72 healthy controls matched for age and body surface area were included in the study. CMR imaging was performed on a 1.5T Magnetom Avanto (Siemens, Erlangen, Germany) scanner using a standard cardiac protocol. Results CMR showed normal findings in 30 patients (44%), while 16 (24%) had previous myocarditis, 6 (9%) had a diagnosis of non-ischaemic cardiomyopathy (NICM), 15 (22%) were diagnosed with VPC-related cardiomyopathy, and 1 patient had subendocardial infarction [excluded from strain analysis]. Mean left ventricular EF (LVEF) in patients was 62% ± 6% and right ventricular EF 64% ± 6% (vs. 65% ± 3% and 66% ± 4% in controls, respectively). Compared to control subjects, patients with VAs had impaired peak LV global radial strain (GRS) (28.88% [IQR: 25.87% to 33.97%] vs. 36.65% [IQR:33.19% to 40.2%], p &lt; 0.001) and global circumferential strain (GCS) (-17.73% [IQR: -19.8% to -16.33%] vs. -20.66% [IQR: -21.72% to -19.6%], p &lt; 0.001, Panel A). Peak LV GRS could differentiate patients with previous myocarditis from patients with NICM and those with VPC-related cardiomyopathy (Panel B). Peak LV GCS could differentiate patients with previous myocarditis from patients with NICM (Panel C). Peak LV GRS showed excellent diagnostic accuracy in detecting patients from control subjects (Panel D). In a multivariable regression model, subjects with a low GRS (&lt;29.91%-determined by the Youden’s index) had 5-fold higher odds of having VAs (OR:4.99 [95%CI: 1.2-21.95]), after adjusting for LVEF, LV end-diastolic volume index, age, sex, BMI, smoking, hypertension, and dyslipidaemia. Peak LV global longitudinal strain (GLS) and RV strain indices were not statistically different between patients and controls. Conclusion Peak LV GRS and GCS are impaired in patients with frequent idiopathic VAs and can detect myocardial contractile dysfunction in patients with different underlying substrates. Our findings suggest that LV strain indices on CMR-FT constitute independent markers of myocardial dysfunction on top and independently of EF. Abstract Figure.


Author(s):  
Maurício Fregonesi Barbosa ◽  
Mariana Moraes Contti ◽  
Luis Gustavo Modelli de Andrade ◽  
Alejandra del Carmen Villanueva Mauricio ◽  
Sergio Marrone Ribeiro ◽  
...  

AbstractTo determine whether left ventricular (LV) global longitudinal strain (GLS) measured by feature-tracking (FT) cardiac magnetic resonance (CMR) improves after kidney transplantation (KT) and to analyze associations between LV GLS, reverse remodeling and myocardial tissue characteristics. This is a prospective single-center cohort study of kidney transplant recipients who underwent two CMR examinations in a 3T scanner, including cines, tagging, T1 and T2 mapping. The baseline exam was done up to 10 days after transplantation and the follow-up after 6 months. Age and sex-matched healthy controls were also studied for comparison. A total of 44 patients [mean age 50 ± 11 years-old, 27 (61.4%) male] completed the two CMR exams. LV GLS improved from − 13.4% ± 3.0 at baseline to − 15.2% ± 2.7 at follow-up (p < 0.001), but remained impaired when compared with controls (− 17.7% ± 1.5, p = 0.007). We observed significant correlation between improvement in LV GLS with reductions of left ventricular mass index (r = 0.356, p = 0.018). Improvement in LV GLS paralleled improvements in LV stroke volume index (r = − 0.429, p = 0.004), ejection fraction (r = − 0.408, p = 0.006), global circumferential strain (r = 0.420, p = 0.004) and global radial strain (r = − 0.530, p = 0.002). There were no significant correlations between LV GLS, native T1 or T2 measurements (p > 0.05). In this study, we demonstrated that LV GLS measured by FT-CMR improves 6 months after KT in association with reverse remodeling, but not native T1 or T2 measurements.


Open Medicine ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Giovanni Fazio ◽  
Federica Vernuccio ◽  
Emanuele Grassedonio ◽  
Giuseppe Grutta ◽  
Giuseppe Lo Re ◽  
...  

AbstractDilated Cardiomyopathy is a high-incident disease, which diagnosis of and treatments are clinical priority. The aim of our study was to evaluate the diagnostic potential of cardiac magnetic resonance (CMR) imaging; echocardiography and the biochemical parameters that can help us differentiate between the post-ischemic and non-ischemic dilated cardiomyopathy. Materials and methods. The study enrolled 134 patients with dilated cardiomyopathy: 74 with the post-ischemic form and 60 with the non-ischemic one. All patients underwent a coronary imaging test, with echocardiogram, cardiac magnetic resonance and a blood test. Pro-inflammatory cytokines were evaluated using Luminex kit. Data was compared between the two groups. Results. Echocardiography allowed recognition of Left Ventricular Non Compaction in 2 patients. Longitudinal and circumferential strains were significantly different in the two groups (p<0.05). Using CMR imaging a post-myocarditis scar was diagnosed in 2 patients and a post-ischemic scar in 95% of patients with the chronic ischemic disease. The interleukin IL-1, IL-6 and TNF-α levels were higher in the post-ischemic group compared with the non-ischemic one. Conclusions. The use of second level techniques with a high sensitivity and specificity would help distinguish among different sub-forms of dilated cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document