scholarly journals Three-dimensional imaging of the aortic valve and aortic root with computed tomography: new standards in an era of transcatheter valve repair/implantation

2009 ◽  
Vol 30 (17) ◽  
pp. 2079-2086 ◽  
Author(s):  
P. Schoenhagen ◽  
E. M. Tuzcu ◽  
S. R. Kapadia ◽  
M. Y. Desai ◽  
L. G. Svensson
2021 ◽  
Vol 8 ◽  
Author(s):  
Tianyang Yang ◽  
Haini Wen ◽  
Ismail El-Hamamsy ◽  
Qiming Ni ◽  
Yanbin Sun ◽  
...  

Objective: By assessing the normal dimensions and the relationship between the aortic root and leaflets in Chinese population, the objective of this three-dimensional computed tomography (3DCT)-based study was to establish a matching reference for leaflets and aortic root for aortic valve (AV) repair.Method: Electrocardiogram-gated multi-detector CT was performed on 168 Chinese participants with a normal aortic valve. Measurements of the aortic annuli and leaflets were obtained. The correlations between and the ratios of the specific root and leaflet measurements were analyzed. The references for the leaflet and root dimensions were suggested based on geometric height (gH) using a linear regression equation. The utility of the ratios was tested with CT images of 15 patients who underwent aortic valve repair.Result: The mean annulus diameter (AD), sino-tubular junction (STJ) diameter, geometric height (gH), effective height (eH), free margin length (FML), commissural height (ComH), inter-commissural distance (ICD), and coaptation height (CH) were 22.4 ± 1.7 mm, 27.3 ± 2, 0.4 mm, 15.5 ± 1.7 mm, 8.9 ± 1.2 mm, 32.0 ± 3.4 mm, 17.9 ± 1.9 mm, 23.1 ± 2.3 mm, and 3.1 ± 0.6 mm, respectively. The gH/AD, FML/ICD, and eH/ComH ratios were 0.69 ± 0.07, 1.38 ± 0.08, and 0.50 ± 0.07, respectively. The gH correlated with all other leaflet and root measurements (P < 0.01), whereas the FML demonstrated a better correlation with ICD compared with gH (R2 = 0.75, and R2 = 0.37, respectively). The FML/ICD and eH/ComH ratios might be used to assess leaflet-root mismatch and post-repair leaflet billowing.Conclusion: The normal aortic valve measurements based on 3DCT revealed a specific relationship between the root and leaflets; and this will guide the development of an objective method of aortic valve repair.


Author(s):  
Philip S. Crooke ◽  
L. Alan Beavan ◽  
Charles D. Griffin ◽  
Domenico Mazzitelli ◽  
J. Scott Rankin

Objective A full geometric annuloplasty ring could facilitate aortic valve repair. The purpose of this report was to document the design of such a ring using mathematical analyses of normal human aortic valve computed tomographic angiograms. Methods One-millimeter axial slices of high-resolution computed tomographic angiograms from 11 normal aortic roots were used to generate high-density x, y, and z coordinates of valve structures in Mathematica. Three-dimensional least squares regression analyses of leaflet-sinus coordinates were used to assess geometry of aortic valve and root structures. Results Normal valve geometry could be represented as three leaflet-sinus general ellipsoids nested within an elliptical aortic root. Minor-major diameter ratio of the valve base was 0.60 ± 0.07, and elliptical geometry extended vertically up the commissures. By contrast, leaflet-sinus horizontal circumferences were fairly circular (diameter ratios, 0.82–0.87), and the left coronary/noncoronary commissural post was located at the posterior base minor diameter-circumference junction, with the center of the right coronary leaflet opposite. Post location on the circumference was symmetrical, with a deviation of only ±2% to ±3% from 33.3% symmetry. Commissural posts flared outward by 5 to 10 degrees, and leaflet areas were statistically equivalent ( P > 0.10). From end diastole to midsystole, the aortic root became less elliptical (diameter ratio increased by 0.15), but root area expanded minimally (less than +5%). A one-piece rigid annuloplasty ring was designed with 2:3 base ellipticality, three 10-degree outwardly flaring symmetrical posts, and post height = base circumference/2π. Conclusions A three-dimensional aortic annuloplasty ring was designed that could prove useful for enhancing applicability and stability of aortic valve repair.


Practical Perioperative Transoesophageal Echocardiography, 3rd edition, is a concise guide to the use of transoesophageal echocardiography (TOE) for patients undergoing cardiac surgical and interventional cardiological procedures. The text is aimed at anaesthetists and cardiologists, particularly those in training and those preparing for examinations. Three-dimensional imaging is integrated throughout the text. New to the third edition are chapters on mitral valve repair, aortic valve repair, TOE in the interventional catheter laboratory, and TOE assessment of pericardial disease. The first three chapters address the fundamentals of ultrasound imaging: physical principles, artefacts, image optimization, and quantitative echocardiography. Chapters 4 and 5 cover standard views, anatomical variants, and cardiac masses. Chapters 6 and 7 address left ventricular systolic and diastolic function, respectively. The subsequent eight chapters form the core of the book and deal with the cardiac valves and the thoracic aorta. Emphasis is placed on those aspects relevant to cardiac surgery; therefore, the mitral and aortic valves are afforded particular prominence. The role of three-dimensional imaging for the mitral valve is highlighted. Chapter 17 covers the emerging role of TOE for patients undergoing procedures in the catheter laboratory and covers topics such as transcatheter aortic valve replacement and edge-to-edge mitral valve repair. Chapter 18 provides an overview of the common congenital abnormalities encountered in adults. Two chapters address the important subjects of thoracic transplantation and mechanical cardiorespiratory support. Finally, Chapter 21 brings many threads from previous chapters together to describe the role of TOE in assessing haemodynamic instability.


2014 ◽  
Vol 176 (3) ◽  
pp. 1318-1320 ◽  
Author(s):  
Mariam Samim ◽  
Pierfrancesco Agostoni ◽  
Freek Nijhoff ◽  
Ricardo P.J. Budde ◽  
Alferso C. Abrahams ◽  
...  

Author(s):  
Gry Dahle ◽  
Arnt E. Fiane ◽  
Kjell-Arne Rein

A 71-year-old woman with severe congestive heart failure and failed mitral valve repair was referred for surgery. Because of her low ejection fraction, a valve-in-ring procedure was suggested. There was a great difference in the given size for the 34-mm Carpentier-Edwards-Physio-Ring and the biggest available transcatheter valve of 29 mm from Edwards. Therefore, we did a “bench test.” We expanded a 29-mm Edwards SAPIEN-XT aortic valve in a 34-mm Carpentier-Edwards-Physio-Ring. It fitted well and turned out circular with good coaptation of the leaflets. Thereafter, a successful transapical mitral valve-in-ring implantation on cardiopulmonary bypass was performed, and additional leads for cardiac resynchronization was placed.


Sign in / Sign up

Export Citation Format

Share Document